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INTRODUCTION

Non-singular conic of the projective plane

PG(2, q) over the finite field GF(q) consists of

q + 1 points no three of which are collinear.

Do these properties characterize non-singular

conics?

For q odd, affirmatively answered by B. Segre

(1954, 1955).

Generalization 1 (Segre):

Sets of k points in PG(2, q), k ≥ 3, no three

of which are collinear, and sets of k points in

PG(n, q), k ≥ n+ 1, no n+ 1 of which lie in a

hyperplane; the latter are k-arcs.

Relation between k-arcs, algebraic curves and

hypersurfaces. Also, arcs and linear MDS codes

of dimension at least 3 are equivalent ⇒ new

results about codes.



Generalization 2 (Segre) :

k-cap of PG(n, q), n ≥ 3, is a set of k points no

three of which are collinear.

Elliptic quadric of PG(3, q) is a cap of size

q2 + 1.

For q odd, the converse is true (Barlotti &

Panella, 1955).

Also, q2 + 1 is the maximum size of a k-cap in

PG(3, q), q 6= 2.

An ovoid of PG(3, q) is a cap of size q2 + 1 for

q 6= 2; for q = 2 an ovoid is cap of size 5 with

no 4 points in a plane.

Ovoids of particular interest discovered by

J. Tits (1962).

Ovoids ⇒ circle geometries, projective planes,

designs, generalized polygons, simple groups.

Caps ⇒ cap-codes.



Generalization 3 (JAT, 1971):

Arcs and caps can be generalized by replac-

ing their points with n-dimensional subspaces

to obtain generalized k-arcs and generalized k-

caps.

These have strong connections to generalized

quadrangles, projective planes, circle geome-

tries, flocks and other structures.

Remark on references

In a Theorem the names of the authors are in

the same order as the items in the statement.

Also, JAT = Thas J. A.



1. k-Arcs

1.1 Definitions

A k-arc in PG(n, q) is a set K of k points, with
k ≥ n+ 1 ≥ 3, such that no n+ 1 of its points
lie in a hyperplane.
An arc K is complete if it is not properly con-
tained in a larger arc. Otherwise, if K ∪ {P} is
an arc for some point P of PG(n, q), the point
P extends K.

A normal rational curve (NRC) of PG(n, q),
n ≥ 2, is any set of points in PG(n, q) which is
projectively equivalent to

{(tn, tn−1, ..., t,1)|t ∈ GF(q)} ∪ {(1,0, ...,0,0)}.

A NRC contains q + 1 points. A NRC is a
(q + 1)-arc.
n = 2 ⇒ non-singular conic
n = 3 ⇒ twisted cubic
Any (n + 3)-arc of PG(n, q) is contained in a
unique NRC.



1.2 k-Arcs and linear MDS codes

C : m-dimensional linear code over GF(q) of
length k.

If minimum distance d(C) of C is k−m+ 1⇒
C is maximum distance separable code (MDS
code).

For m ≥ 3, linear MDS codes and arcs are
equivalent objects.

C: m-dimensional subspace of vector space
V (k, q).
G: m× k generator matrix for C.
Then C is MDS if and only if any m columns
of G are linearly independent.
Consider the columns of G as points P1, P2, ..., Pk
of PG(m − 1, q). So C is MDS if and only if
{P1, P2, ..., Pk} is a k-arc of PG(m− 1, q).
This gives the relation between linear MDS
codes and arcs.



1.3 The three problems of Segre

I. Given n and q, what is the maximum value
of k for which a k-arc exists in PG(n, q)?

II. For what values of n and q, with q > n+ 1,
is every (q + 1)-arc of PG(n, q) a NRC?

III. For given n and q with q > n + 1, what
are the values of k such that each k-arc
of PG(n, q) is contained in a (q + 1)-arc of
PG(n, q)?

Many partial solutions.
Many results obtained by relating k-arcs to al-
gebraic hypersurfaces and polynomials ( see
e.g. Thas (1968), Ball (2012), Ball & De
Beule (2012), Ball & Lavrauw (2017), Bruen,
Thas & Blokhuis (1988), Hirschfeld (1998),
Hirschfeld, Korchmáros & Torres (2008),
Hirschfeld & Storme (2001), Hirschfeld & Thas
(2016)).



1.4 k-Arcs in PG(2, q)

Theorem

Let K be a k-arc of PG(2, q). Then

(i) k ≤ q + 2;

(ii) for q odd, k ≤ q + 1;

(iii) any non-singular conic of PG(2, q) is a

(q + 1)-arc;

(iv) each (q+1)-arc of PG(2, q), q even, extends

to a (q + 2)-arc.

(q+1)-arcs of PG(2, q) are called ovals; (q+2)-

arcs of PG(2, q), q even, are called complete

ovals or hyperovals.



Theorem (Segre (1954, 1955))

In PG(2, q), q odd, every oval is a non-singular

conic.

Remark

For q even many ovals are known which are

not conics.



Theorem (Segre (1967), JAT (1987))

(i) for q even, every k-arc K with

k > q −√q + 1

extends to a hyperoval;

(ii) for q odd, every k-arc K with

k > q −
1

4

√
q +

25

16
extends to a conic.

Remarks

For q an even non-square bound (i) can be

improved. For most odd values of q bound

(ii) can be improved. One month ago Ball &

Lavrauw (2017) obtained a very good bound

for all odd q, thus improving considerably pre-

vious bounds.



For q a square and q > 4, there exist complete

(q−√q+ 1)-arcs in PG(2, q) (see e.g. Kesten-

band (1981)).

In PG(2,9) there exists a complete 8-arc.



1.5 k-Arcs in PG(3, q)

Theorem (Segre (1955a), Casse (1969))

(i) For any k-arc of PG(3,q), q odd and q > 3,

we have k ≤ q + 1; any k-arc of PG(3,3)

has at most 5 points.

(ii) For any k-arc of PG(3,q), q even and q > 2,

we have k ≤ q + 1; any k-arc of PG(3,2)

has at most 5 points.

Theorem (Segre (1955a), Casse & Glynn (1982))

(i) Any (q + 1)-arc of PG(3, q), q odd, is a

twisted cubic.



(ii) Every (q + 1)-arc of PG(3, q), q = 2h, is

projectively equivalent to

C = {(1, t, te, te+1)|t ∈ GF(q)}∪{(0,0,0,1)},

where e = 2m and (m,h) = 1.



1.6 k-Arcs in PG(4, q) and PG(5, q)

Theorem
(Casse (1969), Segre (1955a), Casse & Glynn
(1984),Kaneta & Maruta (1989), Glynn (1986))

(i) For any k-arc of PG(4, q), q even and q > 4,
k ≤ q+1 holds; any k-arc of either PG(4,2)
or PG(4,4) has at most 6 points.

(ii) For any k-arc of PG(4, q), q odd and q ≥ 5,
k ≤ q + 1 holds; any k-arc of PG(4,3) has
at most 6 points.

(iii) Any (q + 1)-arc of PG(4, q), q even, is a
NRC.

(iv) For any k-arc of PG(5, q), q even and q ≥ 8,
k ≤ q + 1 holds.

(v) In PG(4,9) there exists a 10-arc which is
not a NRC; this is the so-called 10-arc of
Glynn.



Remark

Canonical form of a 10-arc of Glynn:

{(t4, t3, t2 +σt6, t,1)|t ∈GF(q)}∪{(1,0,0,0,0)},
where σ is a primitive element of GF(q) with

σ2 = σ + 1.



1.7 k-Arcs in PG(n, q), n ≥ 3

Theorem

(JAT (1968), Kaneta & Maruta (1989))

Let K be a k-arc of PG(n, q), q odd and n ≥ 3.

(i) If

k > q −
1

4

√
q + n−

7

16

then K lies on a unique NRC of PG(n, q).

(ii) If k = q + 1 and q > (4n − 23
4 )2, then K is

a NRC of PG(n, q).

(iii) If q > (4n − 39
4 )2, then k ≤ q + 1 for any

k-arc of PG(n, q).



Remark

Relying on the new bound of Ball and Lavrauw

in 1.4 the results in the previous theorem can

be improved considerably.



Theorem (Ball (2012), Ball & De Beule (2012))

(i) If K is a k-arc of PG(n, q), q = ph, p prime,

h > 1, n ≤ 2p− 3, then k ≤ q + 1.

(ii) If K is a k-arc of PG(n, p), p prime and

n ≤ p− 1, then k ≤ p+ 1.

(iii) If K is a k-arc of PG(n, q), q = ph, p prime,

with q ≥ n+ 1 ≥ p+ 1 ≥ 4, then

k ≤ q − p+ n+ 1.

(iv) For n ≤ p − 1 all (q + 1)-arcs of PG(n, q),

q = ph, p prime, are NRC.



Theorem (Bruen, JAT & Blokhuis (1988) +
Storme & JAT (1993))

(i) If K is a k-arc of PG(n, q), q even, q 6= 2,
n ≥ 3, with

k > q −
1

2

√
q + n−

3

4
,

then K lies on a unique (q + 1)-arc.

(ii) Any (q + 1)-arc K of PG(n, q), q even and
n ≥ 4, with

q > (2n−
7

2
)2,

is a NRC.

(iii) For any k-arc K of PG(n, q), q even and
n ≥ 4, with

q > (2n−
11

2
)2,

k ≤ q + 1 holds.



1.8 Theorem (JAT (1969))

A k-arc in PG(n, q) exists if and only if a k-arc

in PG(k − n− 2, q) exists.



1.9 Conjecture

(i) For any k-arc K of PG(n, q), q odd

and q > n+ 1, we have k ≤ q + 1.

(ii) For any k-arc K of PG(n, q), q even,

q > n+ 1 and n /∈ {2, q − 2}, we have

k ≤ q + 1.

Remark

For any q even, q ≥ 4, there exists a (q+2)-arc

in PG(q − 2, q).



1.10 Open problems

(a) Classify all ovals and hyperovals of PG(2, q),

q even.

(b) Is every k-arc of PG(2, q), q odd, q > 9 and

k > q −√q + 1 extendable?

(c) Are complete (q−√q+ 1)-arcs of PG(2, q)

unique?

(d) Is every 6-arc of PG(3, q), q = 2h,h > 2,

contained in exactly one (q+1)-arc projec-

tively equivalent to

C = {(1, t, te, te+1)|t ∈ GF(q)}∪{(0,0,0,1)},

with e = 2m and (m,h) = 1?



(e) For which values of q does there exist a

complete (q − 1)-arc in PG(2, q)? There

are 14 open cases.

For q ∈ {4,5,8} a (q − 1)-arc is incomplete

in PG(2, q),

for q ∈ {7,9,11,13} there exists a complete

(q − 1)-arc in PG(2, q),

for q > 13 a (q − 1)-arc of PG(2, q) is in-

complete, except possibly for

q ∈ {49,81,37,41,43,47,53,

59,61,67,71,73,79,83}.

Solved by Ball and Lavrauw (as a corollary

of their bound, see 1.4).

(f) Is conjecture 1.9 true?

(g) Solve problems I, II and III of Segre.



(h) In PG(n, q), q odd and q ≥ n, are there

(q+1)-arcs other than the 10-arc of Glynn

which are not NRC?

(i) Is a NRC of PG(n, q), q ≥ n + 1, 2 < n <

q − 2, always complete?

(j) Find the size of the second largest com-

plete k-arc in PG(2, q) for q odd and for q

an even non-square.

(k) Find the size of the smallest complete k-arc

in PG(2, q) for all q.



2. k-Caps

2.1 Definitions

In PG(n, q), n ≥ 3, a set K of k points no three

of which are collinear is a k-cap.

A k-cap is complete if it is not contained in a

(k + 1)-cap . A line of PG(n, q) is a secant,

tangent or external line as it meets K in 2,1 or

0 points.

The maximum size of a k-cap in PG(n, q) is

denoted by m2(n, q).



2.2 k-Caps and cap-codes

This is entirely based on Hill (1978).

Let K = {P1, P2, ..., Pk} with Pi(ai0, ai1, ..., ain),

be a k-cap of PG(n, q) which generates PG(n, q).

Let A be the k×(n+1) matrix over GF(q) with

elements aij, i = 1,2, ..., k and j = 0,1, ..., n; A

is called a matrix of K.

Let C be the linear [k, n + 1]-code generated

by the matrix AT . Such a code is a cap-code.

A linear code with (n+ 1)×k generator matrix

G is projective if no two columns of G represent

the same point of PG(n, q). Hence cap-codes

are projective.



Delete row i of the matrix A and all columns

having a non-zero entry in that row ⇒ matrix

A1. The [k − 1, n]-code C1 generated by AT1 is

a residual code of C.



Theorem

A projective code C is a cap-code iff every

residual code of C is projective.

Theorem

Let K be a k-cap in PG(n, q) with code C.

Then the minimum weight of C, and that of

any residual, is at least k −m2(n− 1, q).

Theorem

(i) m2(n, q) ≤ qm2(n−1, q)−(q+1), for n ≥ 4;

(ii) m2(n, q) ≤ qn−4m2(4, q)−qn−4−2q
n−4−1
q−1 +1,

n ≥ 5.



2.3 k-Caps in PG(3, q)

For q 6= 2 m2(3, q) = q2 + 1 (Bose (1947),

Qvist (1952)); m2(3,2) = 8. Each elliptic

quadric of PG(3, q) is a (q2+1)-cap and any 8-

cap of PG(3,2) is the complement of a plane.

A (q2 + 1)-cap of PG(3, q), q 6= 2, is an ovoid;

the ovoids of PG(3,2) are its elliptic quadrics.

At each point P of an ovoid O of PG(3, q),

there is a unique tangent plane π such that

π ∩O = {P}.
Ovoid O, π is plane which is not tangent plane

⇒ π ∩O is (q + 1)-arc.

q is even ⇒ the (q2 + 1)(q + 1) tangents of O

are the totally isotropic lines of a symplectic

polarity α of PG(3, q), that is, the lines l for

which lα = l.



Theorems (Barlotti (1955) + Panella (1955),

Brown (2000))

(i) In PG(3, q), q odd, every ovoid is an elliptic

quadric.

(ii) In PG(3, q), q even, every ovoid contain-

ing at least one conic section is an elliptic

quadric.



Theorem (Tits (1962))

W (q) : incidence structure formed by all points

and the totally isotropic lines of a symplectic

polarity α of PG(3, q).

Then W (q) admits a polarity α′ if and only if

q = 22e+1. In that case absolute points of α′

(points lying in their image lines) form an ovoid

O of PG(3, q); O is elliptic quadric if and only

if q = 2.

For q > 2, the ovoids of the foregoing theorem

are called Tits ovoids.

Canonical form of a Tits ovoid :

O = {(1, z, y, x)|z = xy+xσ+2+yσ}∪{(0,1,0,0)},

where σ is the automorphism t 7→ t2
e+1

of GF(q)

with q = 22e+1.



The group of all projectivities of PG(3, q) fixing

the Tits ovoid O is the Suzuki group Sz(q),

which acts doubly transitively on O.

For q even, no other ovoids than the elliptic

quadrics and the Tits ovoids are known.

For q even and q ≤ 32 all ovoids are known

(Barlotti (1955), Fellegara (1962), O’Keefe

& Penttila (1990, 1992), O’Keefe, Penttila

& Royle (1994)). Finally we remark that for

q = 8 the Tits ovoid was first discovered by

Segre (1959).



2.4 Ovoids and inversive planes

Definitions

O : ovoid of PG(3, q)

B : set of all intersections π ∩O,

π a non-tangent plane of O.

Then I(O) = (O,B,∈) is a 3− (q2 + 1, q+ 1,1)

design.

A 3 − (n2 + 1, n + 1,1) design I = (P,B,∈) is

an inversive plane of order n and the elements

of B are called circles.

Inversive planes arising from ovoids : egglike.

If the ovoid O is an elliptic quadric, then I(O),

and any inversive plane isomorphic to it, is

called classical or Miquelian.



Fundamental results

By 2.3 (Theorem of Barlotti & Panella) an

egglike inverse plane of odd order is Miquelian.

For odd order, no other inversive planes are

known.

Theorem (Dembowski (1964))

Every inversive plane of even order is egglike.

Let I be an inversive plane of order n. For

any point P of I, the points of I other than

P , together with the circles containing P with

P removed, form a 2 − (n2, n,1) design, that

is, an affine plane of order n. This plane is

denoted IP and is called the internal plane or

derived plane of I at P .

I(O) egglike⇒ IP Desarguesian, that is, AG(2, q).



Theorem (JAT (1994))

Let I be an inversive plane of odd order n. If

for at least one point P of I, the internal plane

IP is Desarguesian, then I is Miquelian.

There is a unique inversive plane of order n,

n ∈ {2,3,4,5,7} (Witt (1938), Barlotti (1955),

Chen (1972), Denniston (1973, 1973a)).

For n = 3,5,7 a computer free proof of this

uniqueness is obtained as a corollary of the pre-

ceding theorem.



2.5 k-Caps in PG(n, q), n ≥ 3
The maximum size of a k-cap in PG(n, q) is
denoted by m2(n, q).

Theorem
(Bose (1947), Pellegrino (1990), Hill (1973),
Edel & Bierbrauer (1999))

(i) m2(n,2) = 2n; a 2n-cap of PG(n,2) is the
complement of a hyperplane;

(ii) m2(4,3) = 20; there are nine projectively
distinct 20-caps in PG(4,3);

(iii) m2(5,3) = 56; the 56-cap in PG(5,3) is
projectively unique;

(iv) m2(4,4) = 41; there exist two projectively
distinct 41-caps in PG(4,4).



Remark

No other values of m2(n, q), n > 3, are known.

Several bounds were obtained for the num-

ber k for which there exist complete k-caps

in PG(3, q) which are not ovoids; these bounds

are used to determine bounds for m2(n, q), with

n > 3. Here we mention just a few bounds.

Theorem (Hirschfeld (1983))

In PG(3, q), q odd and q ≥ 67, if K is a com-

plete k-cap which is not an elliptic quadric,

then

k < q2 −
1

4
q

3
2 + 2q.



Theorem (JAT (2017))

In PG(3, q), q even and q ≥ 8, if K is a complete

k-cap which is not an ovoid, then

k < q2 − (
√

5− 1)q + 5.

Remark Combining the previous theorem with

the main theorem of Storme and Szőnyi (1993)

there is an immediate improvement of the pre-

vious result. This important remark is due to

Szőnyi.

Theorem (JAT (2017)

In PG(3, q), q even and q ≥ 2048, if K is a

complete k-cap which is not an ovoid, then

k < q2 − 2q + 3
√
q + 2.



Theorem (Meshulam (1995))

For n ≥ 4, q = ph and p an odd prime,

m2(n, q) ≤
nh+ 1

(nh)2
qn +m2(n− 1, q).

Theorem (Hirschfeld (1983))

In PG(n, q), n ≥ 4, q ≥ 197 and odd

m2(n, q) < qn−1 −
1

4
qn−

3
2 + 2qn−2.

In fact, for q ≥ 67 and odd,

m2(n, q) < qn−1 −
1

4
qn−

3
2+

1

16
(31qn−2+22qn−

5
2−112qn−3−14qn−

7
2+69qn−4)

−2(qn−5 + qn−6 + · · ·+ q + 1) + 1,

where there is no term −2(qn−5+qn−6+· · ·+1)

for n = 4.



Theorem (JAT (2017))

(i) m2(4,8) ≤ 479;

(ii) m2(4, q) < q3−q2 +2
√

5q−8, q even, q > 8.

(iii) m2(4, q) < q3 − 2q2 + 3q
√
q + 8q − 9

√
q − 2,

q even, q ≥ 2048.



Theorem (JAT (2017))

For q even, q > 2, n ≥ 5.

(i) m2(n,4) ≤ 118
3 4n−4 + 5

3,

(ii) m2(n,8) ≤ 478.8n−4−2(8n−5+8n−6+· · ·+
8 + 1) + 1,

(iii) m2(n, q) < qn−1−qn−2 +2
√

5qn−3−9qn−4−
2(qn−5 + qn−6 + · · ·+ q + 1) + 1, for q > 8.

(iv) m2(n, q) < qn−1−2qn−2+3qn−3√q+8qn−3−
9qn−4√q−3qn−4−2(qn−5 +qn−4 + · · ·+q+

1) + 1, for q ≥ 2048.



Remark

In PG(3, q), our bound is better than the bound

k ≤ q2− q+ 5 (q even and q ≥ 8) of J. M. Chao

(1999). In 2014, J. M. Cao and L. Ou (2014)

published the bound k ≤ q2−2q+8 (q even and

q ≥ 128), which is better than ours. However

I did not understand some reasoning in their

proof, so I sent two mails to one of the authors

explaining why I think part of the proof is not

correct. I never received an answer.



2.6 Open problems

(a) In PG(3, q), q 6= 2, what is the maximum

size of a complete k-cap with k < q2 + 1?

(b) Classify all ovoids of PG(3, q), for q even.

(c) Is every inversive plane of odd order Miquelian?

(d) Determine m2(n, q) or upper bounds of m2(n, q)

for n ≥ 4, q 6= 2.



3. Generalized ovals and ovoids

3.1 Introduction

Arcs and caps can be generalized by replacing

their points with (n−1)-dimensional subspaces,

n ≥ 1, to obtain generalized k-arcs and gener-

alized k-caps.

We will focus on generalized ovals and gener-

alized ovoids.

Strong connections to: generalized quadran-

gles, projective planes, circle geometries, flocks,

strongly regular graphs, two-weight codes and

other structures.



3.2 Generalized k-arcs and generalized k-caps

Definitions

(1) A generalized k-arc of PG(mn + n − 1, q),

k ≥ m + 1 ≥ 3 : set K of k (n − 1)-

dimensional subspaces such that no m+ 1

of its elements lie in a hyperplane. A gen-

eralized arc K is complete if it is not prop-

erly contained in a larger generalized arc.

Otherwise, if K ∪ {π} is an arc for some

(n−1)-dimensional subspace π of PG(mn+

n− 1, q), the space π extends K.

(2) A generalized k-cap of PG(l, q) : set K of

k (n− 1)-dimensional subspaces, k ≥ 3, no

three of which are linearly dependent.



Theorem (JAT (1971))

(i) For every generalized k-arc of PG(3n−1, q)
we have k ≤ qn + 2; for q odd we always
have k ≤ qn + 1.

(ii) In PG(3n−1, q) there exist generalized (qn+
1)-arcs; for q even there exist generalized
(qn + 2)-arcs in PG(3n− 1, q).

(iii) If O is a generalized (qn+1)-arc of PG(3n−
1, q), then each element πi of O is con-
tained in exactly one (2n− 1)-dimensional
subspace τi which is disjoint from all ele-
ments of O \ {πi}; τi is the tangent space
of O at πi.

(iv) For q even all tangent spaces of a gener-
alized (qn + 1)-arc O of PG(3n− 1, q) con-
tain a common (n − 1)-dimensional sub-
space π; π is the nucleus of O. Hence O is



incomplete and extends to a (qn + 2)-arc
by adding to O its nucleus.

3.3 Generalized ovals and ovoids

Definitions
In Ω = PG(2n + m − 1, q) define a set O =
O(n,m, q) of subspaces as follows: O is a set
of (n − 1)-dimensional subspaces πin−1, with
|O| = qm + 1, such that

(i) every three generate a PG(3n− 1, q);

(ii) for every i = 0,1, ..., qm, there is a sub-
space τi of Ω of dimension m+n−1 which
contains πin−1 and is disjoint from π

j
n−1 for

j 6= i.

(1) If m = n, O is a pseudo-oval or general-
ized oval or [n − 1]-oval of PG(3n − 1, q).



For m = 1, a [0]-oval is just an oval of
PG(2, q). By 3.2 each generalized (qn+1)-
arc of PG(3n− 1, q) is a pseudo-oval.

(2) For n 6= m, the set O is a pseudo-ovoid or
generalized ovoid or [n−1]-ovoid or egg of
PG(2n + m − 1, q). A [0]-ovoid is just an
ovoid of PG(3, q).

(3) The space τi is the tangent space of O at
πin−1; it is uniquely determined by O and
πin−1.

Theorem (Payne & JAT (1984, 2009))

(i) For any O(n,m, q), n ≤ m ≤ 2n holds;

(ii) Either n = m or n(a+1) = ma with a ∈ N0

and a odd.



Theorem (Payne & JAT (1984, 2009))

(i) Each hyperplane of PG(2n + m− 1, q) not

containing a tangent space of O(n,m, q),

contains either 0 or 1 + qm−n elements of

O(n,m, q). If m = 2n, then each such hy-

perplane contains exactly 1 + qn elements

of O(n,2n, q). If m 6= 2n, then there are

hyperplanes which contain no element of

O(n,m, q).

(ii) If n = m with q odd or if n 6= m, then

each point of PG(2n + m − 1, q) which is

not contained in an element of O(n,m, q)

belongs to either 0 or qm−n + 1 tangent

spaces of O(n,m, q). If m = 2n then each

such point belongs to exactly qn+1 tangent

spaces of the egg. If m 6= 2n, then there

are points contained in no tangent space

of O(n,m, q).



(iii) For any O(n,m, q), q even, we have

m ∈ {n,2n}.

Corollary

Let Õ be the union of all elements of any

O(n,2n, q) in PG(4n − 1, q) and let π be any

hyperplane. Then |Õ ∩ π| ∈ {γ1, γ2}, with

γ1 =
(qn − 1)(q2n−1 + 1)

q − 1
, γ1 − γ2 = q2n−1.

Hence Õ defines a linear projective two-weight

code and a strongly regular graph.



3.4 Regular pseudo-ovals and pseudo-ovoids

In the extension PG(2n + m − 1, qn) of the

space PG(2n + m − 1, q), with m ∈ {n,2n},
consider n subspaces ξi, i = 1,2, ..., n, each a

PG(mn +1, qn), that are conjugate in the exten-

sion GF(qn) of GF(q) and which span PG(2n+

m−1, qn). This means that they form an orbit

of the Galois group corresponding to this ex-

tension and that they span PG(2n+m−1, qn).

In ξ1, consider an oval O1 for n = m and an

ovoid O1 for m = 2n.Further, define O1 =

{x(1)
0 , x

(1)
1 , ..., x

(1)
qm }. Next, let x(1)

i , x
(2)
i , ...., x

(n)
i ,

with i = 0,1, ..., qm, be conjugate in GF(qn)

over GF(q). The points x(1)
i , ..., x

(n)
i define an

(n−1)-dimensional subspace πi over GF(q) for

i = 0,1, ..., qm. Then, O = {π0, π1, ..., πqm} is

a generalized oval of PG(3n − 1, q) for n = m



and a generalized ovoid of PG(4n − 1, q) for

m = 2n. These objects are the regular or el-

ementary pseudo-ovals and the regular or ele-

mentary pseudo-ovoids.

Every known pseudo-oval is regular and, for q

even, every known pseudo-ovoid is regular. For

q odd there are pseudo-ovoids which are not

regular.



3.5 Translation duals

Theorem (Payne & JAT (1984, 2009))

(i) For q odd, the tangent spaces of a pseudo-
oval O(n, n, q) form a pseudo-oval O∗(n, n, q)
in the dual space of PG(3n− 1, q).

(ii) The tangent spaces of an egg O(n,m, q) in
PG(2n + m − 1, q) form an egg O∗(n,m, q)
in the dual space of PG(2n+m− 1, q).

Definition

(1) The pseudo-oval O∗(n, n, q) is the transla-
tion dual of the pseudo-oval O(n, n, q).

(2) The egg O∗(n,m, q) is the translation dual
of the egg O(n,m, q).



3.6 Characterizations

Let O = O(n, n, q) = {π0, ..., πqn} be a pseudo-
oval in PG(3n − 1, q). The tangent space of
O at πi is τi. Choose πi, i ∈ {0,1, ..., qn}, and
let PG(2n − 1, q) ⊆ PG(3n − 1, q) be skew to
πi. Further, let τi∩ PG(2n − 1, q) = ηi and
〈πi, πj〉∩ PG(2n− 1, q) = ηj, with j 6= i. Then
{η0, η1, ..., ηqn} = ∆i is an (n − 1)-spread of
PG(2n− 1, q).

Now, let q be even and let π be the nucleus
of O. Let PG(2n − 1, q) ⊆ PG(3n − 1, q) be
skew to π. If ζj = PG(2n − 1, q) ∩ 〈π, πj〉,
then {ζ0, ζ1, ..., ζqn} = ∆ is an (n−1)-spread of
PG(2n− 1, q).

Next, let q be odd. Choose τi, i ∈ {0,1, ..., qn}.
If τi ∩ τj = δj, with j 6= i, then

{δ0, δ1, ..., δi−1, πi, δi+1, ..., δqn} = ∆∗i
is an (n− 1)-spread of τi.



Theorem (Casse, JAT & Wild (1985))

Consider a pseudo-oval O with q odd. Then at

least one of the (n− 1)-spreads

∆0,∆1, ...,∆qn,∆
∗
0,∆

∗
1, ...,∆

∗
qn

is regular iff they all are regular iff the pseudo-

oval O is regular.

Theorem (Rottey & Van de Voorde (2015))

Consider a pseudo-oval O of PG(3n−1, q), with

q = 2h, h > 1, n prime. Then all (n−1)-spreads

∆0,∆1, ...,∆qn are regular iff the pseudo-oval

O is regular.

An alternative shorter proof and a slightly stronger

result is contained in JAT (2017a)



In PG(3n−1, q) let π1, π2, π3 be mutually skew
(n − 1)-dimensional subspaces, further let τi
be a (2n − 1)-dimensional space containing πi
but skew to πj and πk, with {i, j, k} = {1,2,3},
and let τi ∩ τj = ηk, with {i, j, k} = {1,2,3}.
The space generated by ηi and πi will be de-
noted by ζi, with i = 1,2,3. If the (2n − 1)-
dimensional spaces ζ1, ζ2, ζ3 have a (n − 1)-
dimensional space in common, then {π1, π2, π3}
and {τ1, τ2, τ3} are in perspective.

Theorem (JAT (2011))

Assume that O = {π0, π1, ..., πqn} is a pseudo-
oval of PG(3n− 1, q), q odd, and let τi be the
tangent space of O at πi, with i = 0,1, ..., qn.
If for any three distinct i, j, k ∈ {0,1, ..., qn} the
triples {πi, πj, πk} and {τi, τj, τk} are in perspec-
tive, then O is regular. The converse also
holds.



Theorem (Payne & JAT (1984, 2009))

The egg O(n,2n, q) is regular iff one of the

following holds.

(i) For any point z not contained in an element

of O(n,2n, q), the qn + 1 tangent spaces

containing z have exactly (qn − 1)/(q − 1)

points in common.

(ii) Each PG(3n−1, q) which contains at least

three elements of O(n,2n, q), contains ex-

actly qn + 1 elements of O(n,2n, q).

Remark

For more on generalized ovals and generalized

ovoids we refer to THAS & PAYNE (1984,

2009), and THAS, THAS & VAN MALDEGHEM

(2006).



3.7 Open problems

(a) What is the maximium number of elements

of a generalized k-arc in PG(mn+n−1, q)?

(b) What is the maximum number of elements

of a generalized k-cap in PG(l, q)?

(c) Is q2n+1 the maximum number of elements

of a generalized k-cap in PG(4n−1, q), with

m > 1?

(d) A weak generalized ovoid is a generalized

(q2n+1)-cap in PG(4n−1, q). Is every weak

generalized ovoid a generalized ovoid?

(e) Does there exist an egg O(n,m, q) for q odd

and m /∈ {n,2n}?



(f) Is every pseudo-oval regular?

(g) For q even, is every generalized ovoid O(n,2n, q)

regular?

(h) Is O(n, n, q), with q odd, always isomorphic

to its translation dual?

(i) For q even, is every O(n,2n, q) always iso-

morphic to its translation dual?

In the odd case there are counterexamples.

(j) Is a pseudo-oval O(n, n,2) regular if all spreads

∆0,∆1, ...,∆2n are regular?

(k) Consider a pseudo-oval O(n, n, q), with q =

2h, h > 1, and n prime. Is O(n, n, q) regular



if at least one of the spreads ∆0,∆1, ...,∆qn

is regular?

(l) Consider a pseudo-oval O(n, n, q), with q =

2h, h > 1, and n not prime. Is O(n, n, q) reg-

ular if all spreads ∆0,∆1, ...,∆qn are regu-

lar?
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G. and TORRES, F. (2008) Algebraic Curves

over a Finite Field, Princeton University Press,

Princeton, xxii + 696 pp.

HIRSCHFELD, J. W. P. and STORME, L.

(2001) The packing problem in statistics, cod-

ing theory and finite projective spaces: update

2001, in Finite Geometries, Developments in



Mathematics, Kluwer, Boston, pp. 201-246.

HIRSCHFELD, J. W. P. and THAS, J. A.

(2016) General Galois Geometries, second edi-

tion, Springer, London, xvi + 409 pp.

KANETA, H. and MARUTA, T. (1989) An ele-

mentary proof and extension of Thas’ theorem

on k-arcs, Math. Proc. Camb. Philos. Soc.

105, 459-462.

KESTENBAND, B. C. (1981) Unital intersec-

tions in finite projective planes, Geom. Dedic.

11, 107-117.

MESHULAM, R. (1995) On subsets of finite

abelian groups with no 3-term arithmetic pro-

gression, J. Combin. Theory, Ser. A 71, 168-

172.

O’ KEEFE, C. M. and PENTTILA, T. (1990)

Ovoids of PG(3,16) are elliptic quadrics, J.

Geom. 38, 95-106.

O’ KEEFE, C. M. and PENTTILA, T. (1992)

Ovoids of PG(3,16) are elliptic quadrics. II, J.

Geom. 44, 140-159.



O’KEEFE, C. M., PENTTILA, T. and ROYLE,

G. F. (1994) Classification of ovoids in PG(3,32),

J. Geom. 50, 143-150.

PANELLA, G. (1955) Caratterizzazione delle

quadriche di uno spazio (tri-dimensionale) lin-

eare sopra un corpo finito, Boll. Unione Mat.

Ital. 10, 507-513.

PAYNE, S. E. and THAS, J. A. (1984) Fi-

nite Generalized Quadrangles, Pitman, Lon-

don, 312 pp.

PAYNE, S. E. and THAS, J. A. (2009) Fi-

nite Generalized Quadrangles, second edition,

European Mathematical Society, Zurich, xii +

287 pp.

PELLEGRINO, G. (1970) Sul massimo ordine

delle calotte in S4,3, Matematice (Catania) 25,

1-9.

QVIST, B. (1952) Some remarks concerning

curves of the second degree in a finite plane,

Ann. Acad. Sci. Fenn., Ser. A 134, 1-27.

ROTTEY, S. and VAN DE VOORDE, G. (2015)



Pseudo-ovals in even characteristic and ovoidal

Laguerre planes, J. Combin. Theory, Ser. A

129, 105-121.

SEGRE, B. (1954) Sulle ovali nei piani lineari

finiti, Atti Accad. Naz. Lincei Rend. 17, 1-2.

SEGRE, B. (1955) Ovals in a finite projective

plane, Can. J. Math. 7, 414-416.

SEGRE, B. (1955a) Curve razionali normali e

k-archi negli spazi finiti, Ann. Mat. Pura Appl.

39, 357-379.

SEGRE, B. (1959) On complete caps and oval-

oids in three-dimensional Galois spaces of char-

acteristic two, Acta Arith. 5, 315-332.

SEGRE, B. (1967) Introduction to Galois Ge-

ometries, Atti Accad. Naz. Lincei Mem. 8,

133-236 (edited by J. W. P. Hirschfeld).

STORME, L. and THAS, J. A. (1993) M.D.S

codes and arcs in PG(n, q) with q even: an im-

provement of the bounds of Bruen, Thas, and

Blokhuis, J. Combin. Theory, Ser. A 62, 139-

154.



STORME, L. and SZŐNYI, T. (1993) Caps

in PG(n, q), q even, n ≥ 3, Geom. Dedic. 45,

163-169.

THAS, J. A. (1968) Normal rational curves

and k-arcs in Galois spaces, Rend. Mat. 1,

331-334.

THAS, J. A. (1969) Connection between the

Grassmannian Gk−1;n and the set of the k-arcs

of the Galois space Sn,q, Rend. Mat. 2, 121-

134.

THAS, J. A. (1971) The m-dimensional pro-

jective space Sm(Mn(GF (q))) over the total

matrix algebra Mn(GF (q)) of the (n×n)-matrices

with elements in the Galois field GF (q), Rend.

Mat. 4, 459-532.

THAS, J. A. (1987) Complete arcs and alge-

braic curves in PG(2, q), J. Algebra 106, 451-

464.

THAS, J. A. (1994) The affine plane AG(2, q),

q odd, has a unique one point extension, In-

vent. Math. 118, 133-139.



THAS, J. A. (2011) Generalized ovals in PG(3n−
1, q), with q odd, Pure Appl. Math. Q. 7,
1007-1035 (Special Issue: in honor of Jacques
Tits).
THAS, J. A. (2017) On k-caps in PG(n, q),
with q even and n ≥ 3, Discrete Math., to ap-
pear.
THAS, J. A. (2017a) Regular pseudo-hyperovals
and regular pseudo-ovals in even characteristic,
submitted, Arxiv 1702.01097.
THAS, J. A., THAS, K. and VAN MALDEGHEM,
H. (2006) Translation Generalized Quadran-
gles, Ser. Pure Math., vol. 6, World Sci.
Publ., Hackensack, xxx + 345 pp.
TITS, J. (1962) Ovoides et groupes de Suzuki,
Arch. Math. 13, 187-198.
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