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Topic # 4

Cubic Surfaces



Cubic Surfaces with 27 Lines

A cubic surface in PG(,q) is defined by a homogeneous cubic
polynomial in 4 variables.

Cayley (1849): A smooth cubic surface has 27 lines.

We are interested in classifying smooth cubic surfaces over
small finite fields.

We begin with some background material about cubic surfaces
in general.



Cubic Surfaces with 27 Lines

Let us investigate the geometry of cubic surfaces with 27 lines.

Example:
The Clebsch surface.
The picture shows the affine part of the surface with equation

− 3 + 9(x + y + z) + 3(x2 + y2 + z2)

− 42(xy + xz + yz)

− 9(x3 + y3 + z3)

+ 21(x2y + x2z + xy2 + xz2 + y2z + yz2)

− 6xyz = 0.

The equation was chosen so that all 27 lines are real.



Cubic Surfaces with 27 Lines

The picture is based on earlier work by Alan Esculier.
Animation!



Tritangent Planes

Intersect the surface with a plane.

The cubic surface induces a cubic curve on that plane.

That curve may degenerate into three lines.

Such a plane is called a tritangent plane.

Here is an example:



Tritangent Planes

Animation!



Why 27 lines?

Proof (following Salmon)
Let {f = 0} be the equation of the surface. Assume there is at
least one line.

Let PG(3,q) be defined on the four-dimensional vector space
F4 with basis e1, . . . ,e4, and let [x1 : x2 : x3 : x4] be
homogeneous coordinates for PG(3,q).

Since PGL(4,F) is transitive on lines of PG(3,F), we may
assume that this line is L = 〈e1,e2〉 = {x3 = x4 = 0}.

The equation f = 0 can then be written as x3U + x4V = 0 with
U and V quadratic in the xi .

We find all tritangent planes through L since only those planes
give us lines incident with the given line:



Why 27 lines?

Any plane through L can be obtained by assuming that

x3 = µx4

for some scalar µ.

Substituting this into the equation, and dividing by x4 yields a
form which is quadratic in x1, x2, and x4.

The discriminant of this quadratic form is a polynomial in µ of
degree 5.



Why 27 lines?

Hence there are 5 values of µ for which a hyperplane through L
is tritangent.

Now, do some counting:

3 + (5− 1) · 3× 2 = 27.



Five tritangent planes through a line

Animation!



The 27 Lines

The 27 lines (surface removed) Animation!



A Double Six

Following Schläfli, we distinguish 6 lines (red), 6 firther lines
(blue) and 15 lines (yellow).

The 6 red lines a1,a2, . . . ,a6 and the 6 blue lines b1,b2, . . . ,b6
form a double six.

It is customary to indicate a double six in the following notation:[
a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

]



A Double Six

Each line in the array intersects the lines not in the same row or
column.

So, for instance, b6 intersects exactly a1,a2,a3,a4,a5.

There is an extra condition on the 12 lines that we will explain
below.



A Double Six

A double six Animation!



The cij lines

Fifteen further lines are defined using the formula

cij = aibj ∩ ajbi .

Here, aibj is the tritangent plane spanned by ai and bj .

Likewise, ajbi is the tritangent plane spanned by aj and bj .

These fifteen lines cij are drawn in yellow.



The cij lines

The line c14 = a1b4 ∩ a4b1 Animation!



The extra condition

There is an extra condition on the 12 lines of a double six:

For each j , each set of 4 of the {a1, . . . ,a6} \ {aj} has a unique,
distinct, second common transversal distinct from bj .

Notation: If the 4 lines are {a1, . . . ,a6} \ {aj ,ai}, the second
transversal is called bi .



The extra condition

If we don’t impose the extra condition, things can go wrong:

We may have 5 lines of a regulus.

Then any 4 determine a large number of common transversals.

We don’t want this.



Violating the extra condition



Violating the extra condition



Schläfli’s Theorem

Schläfli 1858
Given five skew lines a1,a2,a3,a4,a5 with a single transversal
b6 such that each set of four ai omitting aj (j = 1, . . . ,5) has a
unique further transversal bj , then the five lines b1,b2,b3,b4,b5
also have a transversal a6.



Schläfli’s Theorem
Observe:
The number of monomials of degree 3 in 4 variables is 20:

X 3

Y 3

Z 3

W 3

X 2Y
X 2Z

X 2W
XY 2

Y 2Z
Y 2W

XZ 2

YZ 2

Z 2W
XW 2

YW 2

ZW 2

XYZ
XYW
XZW
YZW

So, cubic surfaces live in PG(19,q).

Forcing a line to lie on the surface implies 4 conditions (if a
cubic is forced to be zero on 4 distinct points of a line, it
vanishes on the line)



Schläfli’s Theorem

A Schläfli double six determines a unique cubic surface with 27
lines.

Proof:
The five lines a1, . . . ,a5, already impose 19 conditions:

The transversal b6 gives 4 conditions.

Each ai intersects b6 and hence gives at most 3 more
conditions.

The generality condition makes sure that these are
independent, so

4 + 5 · 3 = 19.



Classification

The following algorithm produces a classification of cubic
surfaces with 27 lines.

It also produces the associated automorphism groups.

We apply the LEMMA.

We will do two attempts.

Here is attempt 1:



Classification – Attempt 1

Let G = PΓL(4,q).

Let A be the set of double sixes in PG(3,q) (the substructures)

Let B be the set of cubic surfaces in PG(3,q)

Let R be the inclusion relation.



Classification – Attempt 1

It is known that every cubic surface with 27 lines has exactly 36
double sixes of lines on it.

So, we have the following algorithm:

Classify the double sixes in PG(3,q): D1, . . . ,Dm (the ai in the
LEMMA).

Compute the associated cubic surfaces: Let Si be the surface
determined by Di .

Initialize the stabilizer of Si with the stabilizer of Di .

Let T be the set {(D1,S1), . . . , (Dm,Sm)}.



Classification – Attempt 1

While T 6= ∅

Pick the lexicographically least element in T, say (Di ,Si).

Remove (Di ,Si) from T.

Compute the 36 double sixes E1, . . . ,E36 associated with Si .



Classification – Attempt 1

For each j = 1, . . . ,36, perform constructive recognition to
determine the index a ≤ m and a group element g such that

Eg
j = Da.

If a 6= i , and if (Da,Sa) ∈ T, remove (Da,Sa) from the list T.

Otherwise, store g as a new generator for the stabilizer of Si .



Classification – Attempt 2

In Attempt 2, we replace the substructure:

Let A be the set of five sufficiently general lines in PG(3,q) with
a common tranversal (the substructures)

Let B be the set of cubic surfaces in PG(3,q)

Let R be the inclusion relation.



Classification – Attempt 2

The only major change is that each surface has 432 = 36 · 12
elements of A on it.

This is because each double 6 gives rise to 12 configurations of
5 lines with a common transversal.

The common transversal can be picked in 12 ways from the 12
lines of a double six.

If the common transversal is known, the 5 lines must be the
lines not in the same row or column in the double six.



Classification – Attempt 2

It remains to classify five lines in PG(3,q) with a common
transversal.

This can be done on the Klein quadric.

Suppose we call the five lines a1, . . . ,a5 and we let b6 be the
common transversal.

Let κ be the Klein correspondence

lines in PG(3,q)↔ points of Q(5,q)



Classification – Attempt 2

Recall that two lines a,b in PG(3,q) intersect if and only if κ(a)
and κ(b) are collinear in a line of the quadric.

Since we want lines which are pairwise disjoint, we need them
to form a partial ovoid, i.e. a coclique in the collinearity graph of
the quadric.

The κ(ai) for i = 1. . . . ,5 form a partial ovoid in κ(b6)⊥.



Classification – Attempt 2

Let G be the subgroup of the stabilizer of the Klein quadric
corresponding to PΓL(4,q).

G is transitive on points, so we can choose κ(b6) to be any
point P0, say.

The partial ovoids of size 5 in the tangent cone of P0 can then
be classified under the group

StabG(P0).



Classification – Attempt 2

Theorem (B., unpublished)
The cubic surfaces with 27 lines in PG(3,q) are classified for
q ≤ 97.

q #

4 1
7 1
8 1
9 2

11 2
13 4
16 5
17 7

q #

19 10
23 16
25 18
27 11
29 34
31 43
32 11
37 77

q #

41 107
43 126
47 169
49 121
53 258
59 376
61 427
64 101

q #

67 595
71 731
73 813
79 1081
81 331
83 1292
89 1673
97 2304



Eckardt Points
An Eckardt Point is a point where three lines of the surface
intersect:



Eckardt Points

Let #E be the number of Eckardt points on a given surface.

It is known that

0 ≤ #E ≤ 45.



Eckardt Points

Here is the classification of cubic surfaces with 27 lines in
PG(3,q) by Eckardt points:



q 0 1 2 3 4 5 6 9 10 13 18 45

4 0 0 0 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 0 0 1 0 0

9 0 0 0 0 0 0 0 1 1 0 0 0

11 0 0 0 0 0 0 1 0 1 0 0 0

13 0 0 0 0 1 0 1 1 0 0 1 0

16 0 0 0 1 0 1 0 1 0 1 0 1

17 0 1 0 1 2 0 3 0 0 0 0 0

19 0 0 2 2 1 0 2 1 1 0 1 0

23 0 2 2 4 3 0 5 0 0 0 0 0

25 0 4 3 3 2 0 3 2 0 0 1 0



q 0 1 2 3 4 5 6 9 10 13 18 45

27 0 2 2 2 2 0 2 1 0 0 0 0

29 1 6 7 11 3 0 5 0 1 0 0 0

31 1 10 9 11 3 0 5 2 1 0 1 0

32 1 3 0 4 0 2 0 0 0 1 0 0

37 4 25 14 18 5 0 7 3 0 0 1 0

41 9 37 19 28 5 0 8 0 1 0 0 0

43 11 48 21 27 6 0 9 3 0 0 1 0

47 20 67 26 38 7 0 11 0 0 0 0 0

49 16 46 19 25 4 0 6 3 1 0 1 0

53 40 110 36 52 8 0 12 0 0 0 0 0

59 72 166 48 68 8 0 13 0 1 0 0 0



q 0 1 2 3 4 5 6 9 10 13 18 45

61 85 193 53 69 8 0 12 5 1 0 1 0

64 20 51 0 17 0 7 0 2 0 3 0 1

67 139 275 65 85 10 0 15 5 0 0 1 0

71 189 335 75 105 10 0 16 0 1 0 0 0

73 216 378 80 105 11 0 16 6 0 0 1 0

79 321 500 97 127 11 0 17 6 1 0 1 0

81 100 149 30 38 4 0 6 3 1 0 0 0

83 411 592 107 149 13 0 20 0 0 0 0 0

89 577 759 127 176 13 0 20 0 1 0 0 0

97 868 1033 154 203 15 0 22 8 0 0 1 0



Results:

The distribution of automorphism groups of these surfaces with
respect to the number of Eckardt points is:





A Family of Cubic Surfaces

Next, we will describe a family of cubic surfaces with #E = 6
invariant under Sym4



A Family of Cubic Surfaces

Consider the 4× 4 matrices

S1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , S2 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , S3 =


−1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 −1

 .

Let si be the projective transformation induced by Si .



A Family of Cubic Surfaces

Lemma
The subgroup A of PGL(4,q) generated by s1, s2, s3 is
isomorphic to Sym4 if q is odd and isomorphic to Sym3 if q is
even.

Proof:
Verify the relations of Sym4:

s2
1 = s2

2 = s2
3 = (s1s2)3 = (s2s3)3 = (s1s3)2 = 1.

Note:
For q even, S3 = S1 and hence A ' Sym3.



A Family of Cubic Surfaces

Let q be odd.

For a 6∈ {0,±1}, a2 6= ±1, and b 6= 0, consider the line

la,b =

[
1 a 0 0
0 0 1 b

]
.

Let Oa,b be the orbit under A of the line la,b.



A Family of Cubic Surfaces

Lemma
Oa,b is a double six.

Let
Sa,b

be the surface defined by Oa,b.



A Family of Cubic Surfaces
The parameter b is not that interesting:

The normalizer of A modulo A acts regularly on the set

{Sa,b | b 6= 0}

Info: The normalizer is generated by

nα = diag(1,1,1, α)

where α is a primitive element of Fq.

Hence we may restrict ourselves to the surfaces

Sa := Sa,1.



A Family of Cubic Surfaces

Lemma
The equation of Sa,b is

W 3 − b2(X 2 + Y 2 + Z 2)W +
b3

a
(a2 + 1)XYZ = 0.

Lemma
The surface Sa,b has at least 6 Eckardt points.
If
√

5 ∈ Fq and a = −2±
√

5 and b 6= 0, then Sa,b has at least
10 Eckardt points.

If a = ±
√
−3 ∈ Fq or a = ±

√
−1

3 ∈ Fq and b 6= 0, then Sa,b has
at least 18 Eckardt points.



A Family of Cubic Surfaces

The three lines c12, c34 and c56 form a triangle in the plane
W = 0, given by the lines

c12 : Z = W = 0, c34 : Y = W = 0, c56 : X = W = 0.

Thus, W = 0 is a tritangent plane.

The group A acts transitively on these three lines and fixes the
tritangent plane.

The double six Oa,b and the remaining 12 lines form two further
orbits under A of size 12 each.



A Family of Cubic Surfaces

The tritangent plane W = 0 contains six Eckardt points, two on
each side of the triangle:

E1 := c12 ∩ c35 ∩ c46 = P(1,1,0,0),

E2 := c12 ∩ c34 ∩ c36 = P(1,−1,0,0),

E3 := c34 ∩ c16 ∩ c25 = P(1,0,1,0),

E4 := c34 ∩ c15 ∩ c26 = P(1,0,−1,0),

E5 := c56 ∩ c14 ∩ c23 = P(0,1,1,0),

E6 := c56 ∩ c13 ∩ c24 = P(0,1,−1,0).

The group A acts transitively on these six Eckardt points.


