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Q: What makes a problem interesting?

Maybe it is being difficult.

If this is true, then Finite Geometry is full of interesting
problems.



In the words of John F. Kennedy:

We choose to go to the moon and do the other things
not because they are easy but because they are hard.



In the words of Peter Cameron:

That a problem is hard does not mean we should not
solve it.



Prologue



The goal is this lecture sequence is to say something
meaningful about the problem of constructing and classifying
combinatorial objects.

(with an emphasis on objects from finite geometry).

A large number of problems can be reduced to classifying
orbits of groups acting on sets.



The sets are often very large and at times not readily available.

We need to perform search and isomorph rejection at the same
time.



Terminology

Let G be a group.

Let G act on a finite set X .

For x , y ∈ X , say that x ∼G y if x and y belong to the same
G-orbit.



Terminology

The isomorphism problem is the following:

Given x , y ∈ X , determine whether x ∼G y or not.



Terminology

The classification problem is the problem of determining the
orbits of G on X , for instance by listing one element from each
orbit.

Such a list of orbit representatives is called a transversal for the
orbits of G on X .

From now on, assume that a transversal for the orbits of G on X
has been fixed.

Suppose that r1, . . . r` is a transversal for the G-orbits on X .



Terminology

The recognition problem is the following:

Given x ∈ X , find the unique ri with ri ∼G x .



Terminology

The constructive recognition problem is the following:

Given x ∈ X , find the unique ri with ri ∼G x and find an element
g ∈ G with

xg = ri .



Computer Usage

The problems we will discuss typically require a great many
number of cases to be considered.

These cases will be considered by computer.

Some mathematicians feel uneasy about the use of computers
as a means to prove theorems.



“Without computers, we would
be stuck only proving theorems
that have short proofs.”

Ken Appel
1932 – 2013



Four Colors Suffice

The New York Times writes:

Some of the thorniest problems in math are simple to state but
hideously complex under the surface.

Such is the case with the four-color theorem, first enunciated by
an English mapmaker, Francis Guthrie, in 1852.

He asserted that to create a map in which no adjacent
countries are the same color, only four colors are needed.

Although everyone believed it was true, proof had eluded a
century of mathematicians until Dr. Appel attended a lecture in
1972 by Dr. Haken.



A proper 4-coloring





From the NY-Times:

Their four-color proof earned newspaper headlines and a
prestigious award in mathematics, the Delbert Ray Fulkerson
Prize.

But the notion of computer proofs drew skepticism in some
academic circles.

In a visit to one university, Dr. Appel and Dr. Haken said,
professors barred them from meeting graduate students lest
the students’ minds become contaminated.



Hailed in some circles as “a major intellectual feat,” the proof
shepherded computers toward a greater role in higher math.

But it made many mathematicians uneasy; they worried about
computer bugs and wondered how they could check or
understand a “proof” they could not see.

And it ignited a long-running debate about what constitutes a
mathematical proof.



The work which will be presented here makes great use of
computers to perform and handle automatic case divisions.

If you are uneasy about this, maybe this talk is not for you.

At times, we may split a problem into thousands or sometimes
hundreds of thousands of cases.



Comment:

Why do we need these classifications?

In mathematics, we develop theory to explain the examples.

If we don’t have examples, it can be quite difficult to build
theory.



There are many problems in finite geometry where we need
more examples to make progress.

I would like to illustrate some instances of such problems.

Some of these problems have already been mentioned in the
lectures by previous speakers.



List of problems for the next few lectures:

• BLT-sets (related to flocks).

• Parallelisms in PG(3,q)

• Optimal linear codes

• Cubic surfaces



My goal is to show that these are not separate problems.

The same set of basic algorithmic tools can be applied to attack
many of these problems.



A Lemma



Let A and B be two disjoint finite sets.

A relation R between A and B is a subset of the cartesian
product A× B.

Suppose that there is a group G acting on both A and B.

A relation R between A and B is G-invariant if

(a,b) ∈ R ⇐⇒ (ag ,bg) ∈ R

for all a ∈ A, b ∈ B and all g ∈ G.

Here, we use exponential notation to indicate the group action.



Some more terminology:

We say that (a,b) ∈ A× B is an incident pair (or a flag) if
(a,b) ∈ R.

An orbit of G on incident pairs in R is called a flag-orbit.

Every flag orbit is associated with exactly one orbit of G on A
and one orbit of G on B.

For x ∈ A, we say that OrbG
(
(a,b)

)
lies over OrbG(x) if

OrbG(x) = Π1

(
OrbG

(
(a,b)

))
.

For y ∈ B, we say that OrbG
(
(a,b)

)
lies over OrbG(y) if

OrbG(y) = Π2

(
OrbG

(
(a,b)

))
.

Here, Πi is the projection onto the i-th component.



The following Lemma relates the G-orbits on A and the
G-orbits on B.



LEMMA:
Let G be a group acting on disjoint finite sets A and B, and let
R be a G-invariant relation between A and B.

Let a1, . . . ,am be representatives for the orbits of G on A, so

A =
m⋃

i=1

OrbG(ai).

Let b1, . . . ,bn be representatives for the orbits of G on B, so

B =
n⋃

j=1

OrbG(bj).



For a ∈ A, let

NB(a) = {(a,b) ∈ {a} × B | (a,b) ∈ R}.

For b ∈ B, let

NA(b) = {(a,b) ∈ A× {b} | (a,b) ∈ R}.



For each i = 1, . . . ,m, the set NB(ai) is a StabG(ai)-set. Let

ti,k = (ai ,bi,k ), k = 1, . . . ,Ki

be representatives of the orbits of StabG(ai) on NB(ai), so

NB(ai) =

Ki⋃
k=1

Ti,k

where
Ti,k = OrbStabG(ai )

(
ti,k
)
.



For each j = 1, . . .n, the set NA(bj) is a StabG(bj)-set. Let

sj,` = (aj,`,bj), ` = 1, . . . ,Lj

be representatives of the orbits of StabG(bj) on NA(bj), so

NA(bj) =

Lj⋃
i=1

Sj,` ` = 1, . . . ,Lj ,

where
Sj,` = OrbStabG(bj )

(
sj,`
)
, ` = 1, . . . ,Lj .



Then:

(a) There is a canonical bijection ψ between the orbits

{Ti,k | i = 1, . . . ,m, k = 1, . . . ,Ki}

and the orbits

{Sj,` | j = 1, . . . ,n, ` = 1, . . . ,Lj}.

(b)
m∑

i=1

Ki =
n∑

j=1

Lj .

(c) If Ti,k and Sj,` are corresponding orbits under ψ, then

|OrbG(ai)| · |Ti,k | = |Sj,`| · |OrbG(bj)|.



Proof:

(a) Each of these sets of orbits is in canonical bijection to the
orbits of G on incident pairs (a,b) ∈ R. Two orbits Ti,k and
Sj,` are in correspondence if the representatives (ai ,bi,k )
and (bj ,aj,`) lie in the same G-orbit, i.e., if there exists a
g ∈ G such that (ai ,bi,k )g = (bj ,aj,`).

(b) Follows from (a).
(c) Double count the number of incident pairs (a,b) ∈ R in the

G-orbit of (ai ,bi,k ) (which contains (bj ,aj,`)).



Let

Ti = {Ti,k | k = 1, . . . ,Ki}, i = 1, . . . ,m,
Sj = {Sj,` | ` = 1, . . . ,Lj}, j = 1, . . . ,n.

Also, let

T =
m⋃

i=1

Ti , S =
n⋃

j=1

Sj .



The lemma provides a bijection

ψ : T→ S.

For i = 1, . . . ,m and for k = 1, . . . ,Ki , let hik be an element
g ∈ G such that

thik
i,k = tψi,k = sj,`.



The bijection ψ allows us to count the number of orbits in Ti
which are associated with elements from Sj . More precisely, let

di,j =
∣∣∣(Ti

)ψ
∩Sj

∣∣∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and form the m × n matrix

D =
(

di,j

)
.

We call this matrix the decomposition matrix for the orbits of G
on R. The ordering of rows and columns of the decomposition
matrix depends on the order in which we arrange the orbits of
G on A and on B.



The origins of this Lemma are somewhat unclear.

If G is transitive on A and on B, the Lemma is known.

Even though the general case is not much harder to prove, the
Lemma in this form does not seem to be published anywhere.



Comment 1

The purpose of the Lemma is to be able to lift a classification
from one group action to another, related group action.

It can be used to devise an algorithm to compute the orbits of a
group G acting on a partially ordered set.



Comment 2

There are different ways use the Lemma in algorithms:

There is a backtrack approach which favors recomputing the
orbit representatives as we go along.

An example is Brendan McKay’s program nauty. This is
well-known in the graph theory community.

There is another approach where we store group elements
associated to the mapping ψ.

An example is Bernd Schmalz’s algorithm Leiterspiel.

This algorithm is perhaps a bit more universal than nauty. It can
be made to apply to actions on sets and action on subspaces.
It is therefore quite useful in finite geometry.



Topic # 1

BLT-sets over small finite fields



BLT-sets are related to many other objects of interest (flocks,
projective planes, generalized quadrangles etc.).

Classifying BLT-sets up to projective equivalence is a difficult
problem.

However, the number of BLT-sets for a given q seems to be
relatively small.

This makes is interesting to compile lists of classified BLT-sets
for small parameter values q.



10 infinite families of BLT-sets are known.

This still leaves many BLT-sets unexplained.

We hope that by providing more examples, we can help find
new constrctions that would otherwise be very difficult to find.



We have developed a software system Orbiter to support the
classification of combinatorial objects.

The system is a library of C++ classes, available on github.



BLT-sets

Quadrics in projective space (picture credit: Peter Cameron):

Depending on the dimension, they may contain points, lines,
and possibly higher dimensional subspaces.



The quadric Q(4,q) is the set of projective points

[x0 : x1 : x2 : x3 : x4]

with coordinates xi ∈ Fq satisfying the equation

x2
0 + x1x2 + x3x4 = 0.

It contains points and lines.



This gives rise to an incidence structure (P,L):
• P is the set of points on the quadric.
• L is the set of lines on the quadric.

We can think of the elements of L as subsets of P of size q + 1.



Smallest example: q = 2

There are 15 projective points on Q(4,2).

We label them using the numbers 0 through 14.

There are also 15 lines contained in the quadric.



Q(4,2) (15 points, 15 lines)



The lines (as subsets):

{1,14,12}
{12,8,9}
{9,2,10}
{10,13,7}
{7,5,1}

{1,4,2}
{12,0,13}
{9,11,5}
{10,6,14}
{7,3,8}

{3,2,0}
{4,13,11}
{0,5,6}
{11,14,3}
{6,8,4}

Notation:
We say that two points P and Q are collinear (written
as P ∼ Q) if there is a line (i.e., a subset) that contains
both.

Example: 0 ∼ 2 but 0 6∼ 1.

Observe: Not any two points are collinear, so this is different
from a projective space, for instance (it is known as a polar
space).



The incidence matrix I:
rows = points, columns = lines.



0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
5 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
7 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
9 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
12 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
14 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0





We verify that 0 ∼ 2 because there is a column that has a one
in both row 0 and in row 2:



0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
4 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
5 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
7 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
9 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
12 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
13 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
14 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0


However, 0 6∼ 1 because no column contains both 0 and 1.



The Generalized Quadrangle Axiom:

If a point P is not on a line ` then there is exactly one
point Q on ` such that P and Q are collinear.

If then

The Q(4,q) quadric is a generalized quadrangle with
parameters s = t = q.



The following definition is due to Bader, Lunardon and Thas
1990:

Definition
A BLT-set is a set of q + 1 points on Q(4,q) such that no
quadric point is collinear to three points in the set.

The name BLT is due to William Kantor.



Classification

The Isomorphism Problem for BLT-Sets:

Definition
Two BLT-sets are isomorphic if they are projectively equivalent
(under a symmetry of the Q(4,q)).

The group of Q(4,q) is the orthogonal group PΓO(5,q).



So, if B1 and B2 are BLT-sets and if there is an invertible 5× 5
matrix M over Fq and a field automorphism φ of Fq such that

Q(4,q)(M,φ) = Q(4,q) and B(M,φ)
1 = B2

then B1 and B2 are isomorphic.

Here, (M, φ) is the mapping that takes

[x0 : x1 : x2 : x3 : x4]

to
([x0, x1, x2, x3, x4] ·M)φ

We are mapping sets pointwise:

B(M,φ)
1 = {P(M,φ) | P ∈ B1}.



What is known about BLT-sets?

• Q(4,q) has a BLT-set if and only if q is odd.

So, Q(4,2) above was the wrong example. Sorry!

Let’s look at Q(4,3) (with 40 points and 40 lines):





Where is the BLT-set ?





Up to isomorphism, there is only one BLT-set of Q(4,3).

Up to isomorphism, there are exactly two BLT-sets of Q(4,5).

Here is the classification:



B. 2013
The BLT-sets are classified for q ≤ 67:

q BLT
3 1
5 2
7 2
9 3

11 4
13 3
17 6
19 5

q BLT
23 9
25 6
27 6
29 9
31 8
37 7
41 10

q BLT
43 6
47 10
49 8
53 8
59 9
61 5
67 6

The Number of Isomorphism Classes of BLT-Sets of Order q

The numbers for q ≤ 29 are due to a combination of Penttila,
Royle, Thas.



Cliques
A clique in a graph Γ is a set of vertices such that the induced
subgraph is complete.

{A,K ,G,M, J,H}

is a maximal
clique,

as is

{E ,D,F ,L}.
(besides all
edges)



Cliques

Finding all maximal cliques in a graph is a difficult algorthm.

There is an algorithm to list all maximal cliques in a graph due
to Bron and Kerbosch (from the 1970s).

The algorithm has exponential running time.



Cliques

To explain why we need cliques, let us look at the algorithm to
classify BLT-sets.

We define a class of graphs ΓS whose cliques are important.



We use subobjects:

A partial BLT-set of size s is a set of s points such that no point
of Q(4,q) is collinear to three points in S.

Observe that a partial BLT-set of size q + 1 is just a BLT-set.

Observe that any subset of a BLT-set is a partial BLT-set.



We choose an integer s (smallish).

Classify — up to isomorphism — all partial BLT-sets of size s.

For this, we use an algorithm that classifies orbits on posets.

The orbit representatives of partial BLT-sets of size s are called
starter.



Let S be a starter (i.e., a partial BLT-set of size s for some small
value of s).

The goal is to find all BLT-sets containing S.

This is known as lifting S.



Define a graph ΓS = (V ,E) where

V =
{

points P ∈ Q(4,q) \ S | S ∪ {P} is partial BLT-set
}

and

E =
{

(P,Q) ∈ V | S ∪ {P,Q} is partial BLT-set
}



It is clear that every BLT-set containing S corresponds to a
clique in ΓS of size q + 1− s.

Conversely, every clique of ΓS of size q + 1− s gives rise to a
BLT-set containing S.

This has been pointed out by Penttila.



Thus, we have reduced the problem of finding all BLT-sets
containing S to the problem of finding all cliques of size
q + 1− s in ΓS.

Once this problem is solved, we also need to consider the
problem of isomorphism classification of the liftings.



Rainbow Cliques

Color on the vertices of ΓS:

Let ` be any line through any one of the points of the partial
BLT-set.



Rainbow Cliques

Color the points of V (the vertices of ΓS):

Take the elements of ` \ {S} as colors.

Color a point P ∈ V according to the point on ` that P is
collinear with.

This defines a vertex colored graph ΓS,`.



Example:

The Colored Graph ΓS,` (Edges not shown)



Definition:
Let Γ be a vertex colored graph. A rainbow clique in Γ is a
clique that intersects each color class in eactly one element.

Lemma:
The BLT-sets containing S correspond one-to-one to the
rainbow cliques in ΓS,`.



Observe that it is much easier to search for rainbow cliques in
ΓS,` than it is to search for cliques in ΓS:

If the current clique is incomplete and if there are no candidates
of a given color and we still need that color, then we can
conclude that there is no rainbow clique cointaining the current
clique.

This is a stopping condition.



Q: Where exactly is the difficult part in the classification
algorithm of BLT-sets?

Most of the computing time is spent on the lifting of the starter
partial BLT-sets.

We had to find all rainbow cliques of size ∼ 60 in graphs with
several thousand vertices.

The computations were performed in parallel (twice): Once on
the Open Science Grid, the other time on a 64 CPU machine in
the department.

The overall CPU-time was enormous. For the BLT-sets of order
67, we used ≈ 16 years of CPU time (each time).



Topic # 2

Spreads and Packings



Projective Geometry over a Finite Field

PG(n,q) is a point-line incidence structure.

PG(3,q) has q3 + q2 + q + 1 points and q4 + q3 + 2q2 + q + 1
lines.

Each point is on q2 + q + 1 lines and each line has q + 1 points.

Two lines intersect in at most one point. This happens precisely
if the two lines lie in a plane. Otherwise they are called skew.



The smallest projective three-space PG(3,2):



Coordinates

We use homogeneous coordinates

(a0 : a1 : a2 : a3), ai ∈ Fq

to denote points.

Lines are subspaces of rank two.

Using a notation from coding theory, we write them as
generator matrices: [

a b c d
e f g h

]
The subspace is obtained by taking the row-span of the
generator matrix.



Symmetry
The symmetry group of PG(n,q) is generated by invertible n× n
matrices over Fq (here n = 4):

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33


together with the field automorphism

φ : α 7→ αp

acting as

φ : (a0 : a1 : a2 : a3) 7→ (ap
0 : ap

1 : ap
2 : ap

3).

This is the group
PΓL(n,q)



Projective Geometry over a Finite Field

Objects inside PG(n,q) are called isomorphic (or projectively
equivalent) if they lie in the same orbit under the symmetry
group.

The problem of classification is to find all pairwise
non-isomorphic objects of a certain kind (for instace, by making
a list).

Related problems are that of recognition and identification:

If an object is given, identify the one in the list that it is
isomorphic to (for instance by finding a group element that
maps one to the other).



Spreads and Packings in PG(3,q)

A spread of PG(3,q) is a par-
tition of the points by lines:



Spreads and Packings in PG(3,q)

Every PG(3,q) has (up to isomorphism) at least one spread,
the regular spread.

It can be thought of a being obtained by field reduction from
PG(1,q2):

Let

Fq2 = Fq + αFq

and consider the mapping

(a + bα, c + dα) 7→ (a,b, c,d)

Under this mapping, the points of PG(1,q2) become lines of
PG(3,q) and give a spread.



Spreads and Packings in PG(3,q)

A regulus is a set of q + 1 mutually skew lines with the property:

Any line intersecting three of its lines must intersect all
of its lines.

The set of reguli defines a 3-design in the set of lines of
PG(3,q).



A regulus partitions the set of points of a hyperbolic quadric
Q+(3,q) (there are two reguli associated with any given
Q+(3,q)):



Spreads and Packings in PG(3,q)
A spread is regular if with any three lines of it, the regulus
determined by these three lines is contained as well.

Transation planes arise from spreads, hence the interest in
spreads.

1. André, Johannes (1954). Über nicht-Dessarguessche
Ebenen mit transitiver Translationsgruppe. pp. 156-186.

2. Bruck, R. H.; R. C. Bose (1964). The Construction of
Translation Planes from Projective Spaces. pp. 85-102.

Regular spreads are associated with Pappian (Desarguesian if
finite) projective planes, hence the interest.



Spreads and Packings in PG(3,q)

Using the Hiramine/Matsumoto/Oyama-construction, each
spread gives an infinite family of spreads and hence of
translation planes.



Spreads and Packings in PG(3,q)

A packing is a set of spreads, pairwise disjoint, such that every
line of PG(3,q) belongs to exactly one of the chosen spreads.

Other names:
1. Resolution,
2. Parallelism,
3. Large set.



Spreads and Packings in PG(3,q)

It is not clear when packings exist.

A packing is regular if it is made up solely of regular spreads.

A family of regular packings has been described by Penttila and
Williams 1998.

We need a congruence on q for this.



Spreads and Packings in PG(3,q)

Open questions:

1. What kinds of packings exist?
2. Do there exist other regular packings that the ones of

Penttila and Williams?

It would be nice to classify spreads and packings of PG(3,q) for
small q.



Spreads and Packings in PG(3,q)

Some counting yields:

A spread has q2 + 1 lines. A packing consists of q2 + q + 1
spreads.



Applications

Packings are related to an old problem in Combinatorics,
namely Kirkman’s 15 schoolgirls, from 1850:



The 15 Schoolgirls

The packings of PG(3,2) provide solutions to this problem:
The points correspond to the schoolgirls.
The lines play the role of the rows of 3 girls.
The packing partitions the rows so that we can “parade” the
girls over the seven days.



The 15 Schoolgirls

One solution is:

Monday 5 8 14 27 31
Tuesday 3 16 20 26 28
Wednesday 2 11 19 21 33
Thursday 6 7 24 25 32
Friday 0 10 15 23 34
Saturday 1 9 13 18 29
Sunday 4 12 17 22 30


The numbers 0, . . . ,34 represent the 35 lines of PG(3,2).



The Lines of PG(3,2)
L0 =

[
1000
0100

]
L1 =

[
1000
0110

]
L2 =

[
1000
0101

]
L3 =

[
1000
0111

]
L4 =

[
1000
0010

]
L5 =

[
1000
0011

]
L6 =

[
1000
0001

]
L7 =

[
1010
0100

]
L8 =

[
1010
0110

]

L9 =

[
1010
0101

]
L10 =

[
1010
0111

]
L11 =

[
1100
0010

]
L12 =

[
1100
0011

]
L13 =

[
1100
0001

]
L14 =

[
1001
0100

]
L15 =

[
1001
0110

]
L16 =

[
1001
0101

]
L17 =

[
1001
0111

]

L18 =

[
1001
0010

]
L19 =

[
1001
0011

]
L20 =

[
1010
0001

]
L21 =

[
1011
0100

]
L22 =

[
1011
0110

]
L23 =

[
1011
0101

]
L24 =

[
1011
0111

]
L25 =

[
1101
0010

]
L26 =

[
1101
0011

]

L27 =

[
1110
0001

]
L28 =

[
0100
0010

]
L29 =

[
0100
0011

]
L30 =

[
0100
0001

]
L31 =

[
0101
0010

]
L32 =

[
0101
0011

]
L33 =

[
0110
0001

]
L34 =

[
0010
0001

]



The Lines of PG(3,q)

A convenient way to encode the lines of PG(3,q) is by means of
the Klein correspondence.

Lines in PG(3,q) correspond to points on the Klein quadric

x1x2 + x3x4 + x5x6 = 0.

We will say something about polar spaces below.



The 15 Schoolgirls
The schoolgirls appear as binary vectors of length 4:
Girl0 = (1,0,0,0)
Girl1 = (0,1,0,0)
Girl2 = (0,0,1,0)
Girl3 = (0,0,0,1)
Girl4 = (1,1,1,1)
Girl5 = (1,1,0,0)
Girl6 = (1,0,1,0)
Girl7 = (0,1,1,0)
Girl8 = (1,1,1,0)
Girl9 = (1,0,0,1)
Girl10 = (0,1,0,1)
Girl11 = (1,1,0,1)
Girl12 = (0,0,1,1)
Girl13 = (1,0,1,1)
Girl14 = (0,1,1,1)



A Generalization

Following Hirschfeld, let us generalize Kirkman:

If (q2 + 1)(q + 1) schoolgirls go walking each day in
q2 + 1 rows of q + 1, they can walk for q2 + q + 1 days
so that each girl has walked in the same row as has
every other girl and hence with no girl twice.

The packings of PG(3,q) provide solutions to this problem.

Let us look at q = 3.



The 40 Schoolgirls
One solution is:

Monday 6 14 43 60 61 80 90 94 114 119
Tuesday 0 29 47 54 88 97 100 109 115 124
Wednesday 2 17 33 39 58 68 79 96 112 129
Thursday 7 16 28 45 57 66 76 87 103 118
Friday 12 18 22 32 52 69 75 98 106 123
Saturday 9 40 59 70 77 81 99 101 104 127
Sunday 5 20 49 55 73 84 102 108 116 117
Day 8 8 24 26 42 51 67 82 111 113 126
Day 9 10 21 27 38 41 63 71 85 91 121
Day 10 3 15 36 44 64 65 89 95 105 125
Day 11 11 19 23 30 35 46 53 78 107 128
Day 12 1 31 50 56 62 72 74 86 93 120
Day 13 4 13 25 34 37 48 83 92 110 122


The numbers 0, . . . ,129 represent the 130 lines of PG(3,3).



The 40 Schoolgirls

This particular solution is special.

It has a symmetry group that is A6 (of order 360).



What is known about Spreads and Packings?

• In PG(3,2) there is only the Desarguesian spread.

• There are exactly two packings of PG(3,2), they are dual to
each other.

• In PG(3,3) there are exactly two spreads: The
Desarguesian spread and the Hall spread.

• Prince 1997 finds 7 packings of PG(3,3) invariant under a
group of order 5.

• It has been known for some time (Dennistion 1973, Prince
1997) that there are no regular packings in PG(3,3)
(packings that consist only of the Desarguesian spread).



What is known about Spreads and Packings?

• Prince 1998 finds 2 transitive regular packings in PG(3,5).
(in the paper, he claims that he has 45, but this has been
pointed out to be incorrect by Penttila).

• Denniston 1972 finds regular packings in PG(3,8).

• Penttila and Williams 1998 find two infinite families of
regular packings in PG(3,q) with q ≡ 2 mod 3. The two
families are dual to each other. These examples generalize
the Prince packings in PG(3,5) and the Denniston
packings in PG(3,8). They do not arise for PG(3,3).



Packings in PG(3,3)

B. 2013

There are 73343 packings in PG(3,3).

The distribution of the orders of the automorphism groups is:

360, 2882, 482, 363, 326, 2412, 182, 1616, 128, 102, 8131,
620, 54, 4554, 354, 22904, 169622.



Packings in PG(3,3)

An Invariant:

Let j count the number of Desarguesian spreads in the packing.

Then 13− j is the number of Hall spreads.

We consider (j ,13− j) the type of a packing in PG(3,3).

Our classification by type is as follows (The 7 packings of
Prince are marked red in the table):



Type Packings Distribution of Automorphism
Group Orders

( 13, 0) 0
( 12, 1) 0
( 11, 2 ) 6 10, 2, 14

( 10, 3 ) 12 22, 110

( 9, 4 ) 392 162, 82, 415, 285, 1288

( 8, 5 ) 574 82, 254, 1518

( 7, 6 ) 2406 248, 12358

( 6, 7 ) 4190 10, 279, 14110

( 5, 8 ) 9670 413, 2230, 19427

( 4, 9 ) 14391 84, 426, 332, 2311, 114018

( 3, 10 ) 15452 44, 278, 115370

( 2, 11 ) 13395 424, 2270, 113101

( 1, 12 ) 9995 360, 2882, 482, 363, 322, 2412,
182, 1610, 128, 8104, 620, 54, 4369,
322, 21374, 18060

( 0, 13 ) 2860 324, 164, 819, 4103, 2372, 12358



Subobjects

On Monday, professor Zhelezova discussed partial packings.

A partial packing is a set of pairwise line-disjoint spreads.

We consider as subobjects the partial packings of a certain size
s, say.



The idea is to classify partial packings and then to somehow
“lift” these to the packings.

Each partial packing must be lifted.

This lifting is done using a Computer Science primitive (Exact
cover, Cliques in graphs, System of equations over the integers
etc).

A final isomorph rejection step finishes the job.



Some Theory

So, in this application,

A = partial packings of size s,

B = packings (= partial packings of size q2 + q + 1),

R = inclusion of spreads.



Step 1: Classification of Subobjects

i Partial Distribution Average
Packings of Stabilizer Stabilizer

with i Orders Order
Spreads

0 1 12130560 12130560
1 2 5760, 1920 3840
2 17 240, 120, 96, 48, 322, 24, 162,

122, 10, 82, 6, 42
40 + 8

17 = 40.471

3 1,274 240, 96, 72, 482, 322, 247, 168,

128, 102, 832, 612, 485, 312, 2341,

1760

2 + 578
1274 = 2.454

4 219,066 72, 64, 483, 40, 36, 323, 2411,

18, 1611, 1220, 10, 8127, 631,

4848, 322, 29312, 1208672

1 + 14050
219066 = 1.064



Step 1: Classification of Subobjects

As we can see, the average order of the stabilizer of orbit
representatives approaches 1.

This is how we choose s.

Some experimenting many be necessary.



Step 2: Liftings
Let P1, . . . ,Pm be representatives for the partial packings of
size s under the action of G = PΓL(4,q).

So,

A =
m⋃

i=1

G(Pi).

It remains to compute the liftings for each Pi .

NB(Pi) = {(Pi ,Q) | Q is a packing of PG(3,q) containing Pi}

This problem can be formulated as an Exact Cover Problem:



Exact Cover
Given a 0/1 matrix: 

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1


Find a selection of the rows such that each column (inside the
selection) sums up to one:

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1





Represent the coefficient matrix as a 2-dimensional doubly
linked list:



Exact Cover

Don Knuth

uses this data structure to realize an efficient search algorithm,
known under the name Dancing Links.



Step 3: Isomorph Rejection

Once the lifting is done, we move on to Step 3, the final
isomorph rejection part.

For the isomorph rejection part, we use the LEMMA.



Orbits on Ordered Pairs

We would like to compute the classification

B =
n⋃

j=1

G(Qj)

for some representatives Q1, . . . ,Qm (yet to be determined).



The isomorph classification establishes the bijection ψ from the
LEMMA.

This furnishes the representatives Q1, . . . ,Qn such that

B =
n⋃

j=1

G(Qj).



Summary

• We have classified packings for the field of order q = 3.

• We have data that can be analyzed to find new
constructions of interesting planes.

• We have transformed the mathematical problem into a
Computer Science problem (exact cover).



Topic # 3

Optimal Linear Codes



Why Codes?

Suppose Alice and Bob want to communicate.

Suppose that the channel they use is ’noisy’: bits can flip at any
time.



Why Codes?

Bob may not recieve exactly what Alice has sent.

Is it still possible that Bob can figure out exactly what Alice was
trying to say?

The thinker, by Rodin



Why Codes?

"Very Large Array, Socorro, NM" photo by John Fowler 2012.



Why Codes?

Coding allows us to receive the pictures that were sent from the
spacecraft even though some of the information is corrupted.

Coding is even more important if compressed files are sent.



Jupiter: Voyager flyby February 5, 1979



Saturn: Voyager 2 flyby, July 21, 1981.



Optimal Linear Codes

Recall: the Hamming distance between two vectors:

For two elements x = (x1, . . . , xn) and y = (y1, . . . , yn) in
V = Fn

q, let
d(x,y) = #i : xi 6= yi

be the number of places where x and y differ.



Measuring the number of entries in which two vectors differ is
the fundamental idea which leads to the Hamming metric.

This is a reference to Richard Hamming, another pioneer of
coding theory.



Optimal Linear Codes

Example:
Using the binary expression of integers to denote vectors of
zeros and ones, we write

d(0110011,1010101) = 4,

since 0110011 and 1010101 differ in exactly 4 positions:

0 1 1 0 0 1 1
l l l l
1 0 1 0 1 0 1



Codes

A code C is a subset of V = Fn
q.

A linear code is a code that is a linear subspace of V = Fn
q.

The minimum distance of a code C is

d(C) = min
{

d(x,y) | x,y ∈ C, x 6= y
}
.



Linear Codes

For a linear code, one can show that

d(C) = min
x∈C\{0}

wt(x)

where
wt(x) = d(x,0)

is the number of nonzero entries of x.



Suppose that a codeword c was sent and c′ was received.

Under the assumption that a bit flip on the channel is less likely
than a correct transmission, it make sense to correct c′ to the
nearest codeword c.

This is known as maximum likelihood decoding.

It leads us to consider the metric balls around codewords.

We choose the largest radius such that all metric balls centered
at codewords are disjoint.



We say that a code

C = {c1, . . . ,cN}

can correct e errors if the metric balls of radius e centered
around codewords are disjoint.

Theorem: A code C can correct e errors if any two codewords
are at least 2e + 1 apart.



Linear Codes

A linear code of length n and dimension k and minimum
distance d is denoted as a

[n, k ,d ]

code.

Theorem: A code with minimum distance d can correct bd−1
2 c

errors.



Linear Codes

Let C be a linear code.

Let C⊥ be the dual subspace (dual code).

A generator matrix Γ for C is a k × n matrix whose rows form a
basis for C.



Linear Codes

A check matrix ∆ is a (n − k)× n matrix whose rows form a
basis for the dual code C⊥.

Thus, Γ ·∆> = 0.



Linear Codes

What we want is:

• n should be small,

• k should be large,

• d should be large.

These are contradicting aims.



You cannot fill a fixed size box with very many balls if the balls
are supposed to be large.



Linear Codes

The Singleton bound:

d ≤ n − k + 1

for any [n, k ,d ] code.

A code whose parameters [n, k ,d ] attain equality in the
Singleton bound is called MDS-code (maximum distance
separable).

Example: Reed Solomon codes.



Optimal Linear Codes

The Hamming bound:

b d−1
2 c∑

i=0

(q − 1)i
(

n
i

)
≤ qn−k .

A code whose parameters [n, k ,d ] attain equality in the
Hamming bound is called perfect.

Unfortunately, there are not many perfect codes.



Good Codes

Some good codes pop out of nowhere:

The binary Golay code. Shown is the 12× 24 generator matrix.
The code is the rowspan of this matrix.

The Golay code has minimum distance 8 and therefore can
correct 3 errors.



Optimal Linear Codes

A code is optimal if the minimum distance is best possible
among all codes of equal length and dimension.

Idea: Use computers to search for optimal linear coders.



THEOREM
Let C be a linear code over Fq with check matrix ∆. The
following are equivalent:

• C has minimum distance d
• In ∆, any d − 1 columns are linearly independent and

there exist d columns that are linearly dependent.



Projective Codes

A code is called projective if
• No coordinate is always zero.
• No two coordinates are linearly dependent.

Let C be a projective code with k × n generator matrix Γ.

x0, . . . ,xn−1 the columns of Γ.

m

P(x0), . . . ,P(xn−1) a set of points in PG(k − 1,q).



A set of points in PG(s,q) is r -independent if any r elements
are in general position (i.e., span a subspace of algebraic
dimension r ).

4 points in a plane



Recipe for Finding Good Codes

In order to find [n, k ,≥ d ]q codes, we have to find n points in
PG(n − k − 1,q) with the property that

Any d − 1 are independent.

In order to reduce excess searching, we need to talk about
Code Isomorphism.



Let’s create good codes:

Motivating example: 1 0 0 1 1 1
0 1 0 1 ω ω2

0 0 1 1 ω2 ω


corresponds to the set of size 6 in PG(2,4)

P(1,0,0), P(0,1,0), P(0,0,1), P(1,1,1), P(1, ω, ω2), P(1, ω2, ω).

No three points are collinear. The minimum distance is 4.



Vector Spaces over Finite Fields
Fk

qs the k -dimensional vector space over Fqs .

Two types of subspaces:

• Fi
qs for i ≤ k is called subspace

• Fk
qi for i | s is called subfield subspace

A basis is a set of linearly independent vectors that spans the
subspace over

• Fqs

• Fqi



Cyclic Codes

A code C is cyclic if

(c0, c1, . . . , cn−1) ∈ C ⇐⇒ (cn−1, c0, . . . , cn−2) ∈ C.

Example: BCH codes, Reed-Solomon codes.

Remark:

• Cyclic codes are in 1 to 1 correspondence to the ideals in
the ring Fq[X ]/(X n − 1) (provided gcd(n,q) = 1).



Constacyclic Codes

A code C is constacyclic if

(c0, c1, . . . , cn−1) ∈ C ⇐⇒ (κcn−1, c0, . . . , cn−2) ∈ C

for some κ ∈ F×q (the same κ for every c ∈ C).

A constacyclic code is cyclic if κ = 1.

Example: see below



Permutational, Monomial and Semilinear Isometry
Isometric Codes: Different codes may behave the same way
with respect to the Hamming metric.

There are three types of code isometries:

• Permutational isometries (permuting the coordinates),
• Monomial isometries (permuting the coordinates and

multiplying non-zero constants),
• Semilinear isometries (all of the above plus field

automorphisms).

When we say ’Code’, we often mean the equivalence class of
isometric codes.

In this sense, a code can be cyclic / constacyclic in many
different ways, according to different arrangements of the
coordinates.



Permutational, Monomial and Semilinear
Automorphism Groups

An automorphism is a isometry (of the Hamming space) that
maps the code to itself.

There are three types of automorphism groups:

• Permutational automorphism group PAut,
• Monomial automorphism group MAut,
• Semilinear automorphism group ΓAut.

PAut ≤ MAut ≤ ΓAut.



Automorphisms of Projective Space

We need to understand the automorphisms of projective space.

An automorphism of projective space is an

incidence preserving isomorphism

(also called collineation).

Two sets A and B in PG(n,q) are projectively equivalent if there
is an automorphism α of PG(n,q) with α(A) = B.



Some One-to-One Correspondences

There is a one-to-one correspondence


isometry classes

of projective
[n, k ]q-codes

↔


projective equivalence
classes of n-point-sets

in PG(n − k − 1,q)


There is a one-to-one correspondence


isometry classes

of projective
[n, k ,≥ d ]q-codes

↔


projective equivalence
classes of n-point-sets

in PG(n − k − 1,q)
any d − 1 independent





Using an algorithm to classify orbit on subsets, optimal codes
can be classified.

Tables of optimal linear codes have been computed (and put on
the web).





Families of new codes have been found.

We call them twisted tensor product codes.

In the Number Theory community, the construction is known as
Weil descent.



Results

THEOREM 1 (B. 2008)

A) There exist constacyclic [q2 + 1,q2 − 8,≥ 6]q for any q ≥ 3.
They are cyclic if and only if q is even.

B) There exist [q2 + 2,q2 − 7,≥ 6]q codes for any q ≥ 4 even.

In both cases, the codes are invariant under PΓL(2,q2).

THEOREM 2 (B. 2008)

There exist constacyclic [q3 + 1,q3 − 7,≥ 5]q for any q ≥ 3.
The codes are invariant under PΓL(2,q3).



q = ph, p prime.

Fq = {αi | i = 0, . . . ,q − 2} ∪ {0}.

α a primitive element over Fp.

Φ : t 7→ tp the Frobenius automorphism.



The Construction
Let Vn = Fn

qs be an n-dimensional vector space over Fqs .

Consider

⊗sVn := Vn ⊗ Vn ⊗ · · · ⊗ Vn (s times)

Define a mapping

ιs : Vn → ⊗sVn,

x 7→ x ⊗ φs(x)⊗ φ2
s(x)⊗ · · · ⊗ φs−1

s (x).

This induces a mapping between the corresponding projective
spaces:

ιs : P(Vn)→ P(⊗sVn)



The Construction

The points of PG(1,q) are often identified as follows:

P(1, t)↔ t , P(0,1)↔∞

The Veronese map

νk : PG(1,q)→ PG(k − 1,q), P(a,b) 7→ P(ak ,ak−1b, . . . ,bk )

ν2(PG(1,q)) is the conic

{P(1, t , t2), t ∈ Fq2} ∪ {P(0,0,1)}.



The Construction

Consider

• ι2 ◦ ν3(PG(1,q2))⇒ n = q2 + 1 points in PG(8,q2)

• ι3(PG(1,q3))⇒ n = q3 + 1 points in PG(7,q3)

The image lies in an Fq-subfield subspace.
• PG(8,q)

• PG(7,q)

The codes are projective codes whose point sets are the
subspace bases. For Theorem 1 B, add the nucleus to the
conic ν2(PG(1,q)) (recall that 2 | q in this case).



Example: Theorem 1
Using t = 0,1, . . . ,∞ for the points of the projective line, the ν2
image of PG(1,q2) is the conic

{P(1, t , t2), t ∈ Fq2} ∪ {P(0,0,1)}.

The ι2-image of this set is

{P (1, tq+1, t2q+2, tq, t , t2q, t2, t2q+1, tq+2)︸ ︷︷ ︸
=:yt

, t ∈ Fq2}

together with P (0,0,1,0,0,0,0,0,0)︸ ︷︷ ︸
y∞

.

φ(1) φ(t) φ(t2)
⊗ 1 tq t2q

1 1 tq t2q

t t tq+1 t2q+1

t2 t2 tq+2 t2q+2

ordering of
basis elts.
0 3 5
4 1 7
6 8 2



Example q = 16 (with α4 = α + 1):

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 α5 α5 α10 α10 α10 α5 1 α10 1 α5 1 α5 α10 1 0 1
0 1 α10 α10 α5 α5 α5 α10 1 α5 1 α10 1 α10 α5 1 1 0
0 1 α4 α α8 α2 α5 α10 α12 α11 α6 α13 α9 α7 α14 α3 0 0
0 1 α α4 α2 α8 α5 α10 α3 α14 α9 α7 α6 α13 α11 α12 0 0
0 1 α8 α2 α α4 α10 α5 α9 α7 α12 α11 α3 α14 α13 α6 0 0
0 1 α2 α8 α4 α α10 α5 α6 α13 α3 α14 α12 α11 α7 α9 0 0
0 1 α9 α6 α3 α12 1 1 α12 α6 α6 α3 α9 α12 α9 α3 0 0
0 1 α6 α9 α12 α3 1 1 α3 α9 α9 α12 α6 α3 α6 α12 0 0


This is a generator matrix of an [18,9,8] code over F16 (with
automorphism group PΓL(2,16)).



Example: Theorem 1

The image lies in an Fq-subfield subspace.

Need: Base change.

Observe that for F2
q = Fq(β) we have[

1 1
β βq

]
·
[

t
tq

]
=

[
t + tq

βt + βqtq

]
=

[
T2(t)

T2(βt)

]
which is in the (quadratic) subfield Fq.

Apply this trick in general:



Example: Theorem 1

Sβy>t =



1
1

1
1 1
βqβ

1 1
βqβ

1 1
βqβ





1
tq+1

t2q+2

tq

t
t2q

t2

t2q+1

tq+2


=



1
tq+1

t2q+2

tq + t
βq tq + βt
t2q + t2

βq t2q + βt2

t2q+1 + tq+2

βq t2q+1 + βtq+2


=



1
N2(t)
N2(t2)
T2(t)

T2(βt)
T2(t2)

T2(βt2)
T2(tq+2)

T2(βtq+2)


= x>t

Let ∆ be the check matrix whose columns are the xt , t ∈ Fq2

and x∞ = y∞. This defines the code.



Example: Theorem 1

Here, the image lies in an F4 subspace.

The base change matrix is

Sβ =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 α8 α2 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 α8 α2 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 α8 α2





Example: Theorem 1

Sβ ·M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 α5 α5 α10 α10 α10 α5 1 α10 1 α5 1 α5 α10 1 0 1
0 1 α10 α10 α5 α5 α5 α10 1 α5 1 α10 1 α10 α5 1 1 0
0 0 1 1 1 1 0 0 α10 α10 α5 α5 α5 α5 α10 α10 0 0
0 1 α10 α5 1 0 α5 α10 0 1 α10 α5 1 0 α5 α10 0 0
0 0 1 1 1 1 0 0 α5 α5 α10 α10 α10 α10 α5 α5 0 0
0 1 1 0 α5 α10 α10 α5 1 0 0 1 α10 α5 α5 α10 0 0
0 0 α5 α5 α10 α10 0 0 α10 α5 α5 α10 α5 α10 α5 α10 0 0
0 1 1 α10 α10 0 1 1 0 α10 α10 α10 1 0 1 α10 0 0





Example: Theorem 1

Or, with ω = α5 a primitive element for F4 with ω2 = ω + 1.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 ω ω ω2 ω2 ω2 ω 1 ω2 1 ω 1 ω ω2 1 0 1
0 1 ω2 ω2 ω ω ω ω2 1 ω 1 ω2 1 ω2 ω 1 1 0
0 0 1 1 1 1 0 0 ω2 ω2 ω ω ω ω ω2 ω2 0 0
0 1 ω2 ω 1 0 ω ω2 0 1 ω2 ω 1 0 ω ω2 0 0
0 0 1 1 1 1 0 0 ω ω ω2 ω2 ω2 ω2 ω ω 0 0
0 1 1 0 ω ω2 ω2 ω 1 0 0 1 ω2 ω ω ω2 0 0
0 0 ω ω ω2 ω2 0 0 ω2 ω ω ω2 ω ω2 ω ω2 0 0
0 1 1 ω2 ω2 0 1 1 0 ω2 ω2 ω2 1 0 1 ω2 0 0



Or, in standard form...



Example: Theorem 1



1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 ω2 ω
0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 ω ω2

0 0 1 0 0 0 0 1 0 ω 0 ω2 0 ω 1 ω ω 0
0 0 0 1 0 0 0 1 0 ω2 0 ω 1 ω 1 ω2 ω2 1
0 0 0 0 1 0 0 1 0 ω2 0 ω2 ω 0 ω2 1 ω2 0
0 0 0 0 0 1 0 1 0 ω 0 ω 0 ω2 0 ω2 1 ω
0 0 0 0 0 0 1 1 0 1 0 1 ω2 ω ω ω2 ω ω
0 0 0 0 0 0 0 0 1 1 0 0 ω2 ω2 ω ω ω2 ω2

0 0 0 0 0 0 0 0 0 0 1 1 ω ω ω2 ω2 ω2 ω2





Are The Codes New?

The following question arises:

QUESTION 1
Are the codes of Theorem 1 and 2 new?

Fact 1: There are BCH-codes with the same parameters as the
codes in Theorem 1 A (see below).

Fact 2: There are codes with the same parameters as the duals
of the codes in Theorem 2



Fact 1: A Class of BCH codes

For n = q2 + 1, take the cyclotomic sets of 0,1,2 mod q2 + 1:

{0}
{1,q,q2 ≡ −1,−q,−q2 ≡ 1}
{2,2q,2q2 ≡ −2,−2q,−2q2 ≡ 2}

9 roots, in order:

−2q, −q, −2, −1, 0, 1, 2,︸ ︷︷ ︸
consecutive set

q, 2q,

This yields a [q2 + 1,q2 − 8,≥ 6]q BCH-code.

(minimum distance ≥ 6 b/c we have a consecutive set of size 5)



Are The Codes New?

Since BCH-codes are cyclic, we ask:

QUESTION 2
Are the codes of Theorem 1 and 2 cyclic?

If we can show that the codes of Theorem 1 A are not
cyclic, then we have shown that they are not
BCH-codes and hence (likely) new.

We ask:

QUESTION 3
Given a projective code, how can we tell if the code is cyclic?



When is a Projective Code Cyclic?

C is constacyclic ⇐⇒

There exists a code automorphism α with

α(x0) = x1, α(x1) = x2, . . . α(xn−1) = κx0.

C is cyclic ⇐⇒ the above with κ = 1.



When is a Projective Code Cyclic?

The codes are images of PG(1,q). Thus we ask:

QUESTION 4
What are the cyclic collineations of PG(n,q)?



Cyclic Collineations of Projective Space

LEMMA: (Hirschfeld 1973)

# conjugacy classes of cyclic projectivities of PG(d − 1,q)

= 1
q−1 ·# subprimitive polynomials of degree d over Fq

=
Φ(θd−1(q))

d (with Φ Euler’s totient function)

This answers the question for when a code is constacyclic. We
still need the find the answer for when it is cyclic.



When is a Projective Code Cyclic?

C is constacyclic ⇐⇒

There exists a code automorphism α with matrix T s.t.

T nx0 = κx0, κ 6= 0, and T ix0 6∈ 〈x0〉 i = 1, . . . ,n − 1

C is cyclic ⇐⇒ the above with κ = 1.



The Exponent of a Polynomial

Definition
Let m(x) ∈ Fq[x ] be monic, irreducible of degree d > 1.

The Exponent e
The Exponent of m, denoted Exp(m) is the smallest positive
integer e such that

m(x) divides xe − 1

If β denotes a root of m(x) in Fqd then Exp(m) is the order of β
in F×qd .



The Subexponent of a Polynomial

Definition
The Subexponent of m, denoted Subexp(m), is the smallest
positive integer s such that

m(x) divides xs − κ

for some κ ∈ F×q (κ is called integral element).

If β denotes a root of m(x), then s is the order of β in the factor
group F×qd/F×q . Therefore,

s =
e

gcd(q − 1,e)
.



Primitive and Subprimitive Polynomials

Definition
Let m(x) be a polynomial over Fq.

m(x) is called primitive if Exp(m) = qd − 1.
m(x) is called subprimitive if

Subexp(m) = θd−1(q) =
qd − 1
q − 1

= |PG(d − 1,q)|

Remarks:
• If m(x) is primitive, multiplication by β is a cyclic

collineation of the affine space Fqd over Fq.

• If m(x) is subprimitive, multiplication by β is a cyclic
collineation of the projective space Fqd over Fq.



Generalizing Hirschfeld’s Result

In
T nx0 = κx0,

we need κ = 1. Thus we need to count subprimitive
polynomials with integral element κ = 1.

Actually, we’ll compute the more general counting function

Rκ(d ,q) = # of subprimitive polynomials of degree d
over Fq with integral element κ ∈ Fq.

Write κ = αi where α is a primitive element of Fq.



Generalizing Hirschfeld’s Result

LEMMA

Rκ(d ,q) = Rαi (d ,q) =


g

Φ(g)
· Φ(θd−1(q))

d
if gcd(i ,g) = 1

0 otherwise.

where g = gcd(q − 1, θd−1(q))

Remarks:

• The function Rαi (d ,q) is periodic in i with period
gcd(q − 1, θd−1(q)).

• The non-zero function values depend only on d and q, but
not on i .

• The factor q − 1 in Hirschfeld’s formula is replaced by g
Φ(g) .



Counting Subprimitive Polynomials by Integral
Element

COROLLARY

Rκ(2,q) =


1
2

Φ(q + 1) for all κ if 2 | q,

Φ(q + 1) if 2 - q and κ is a nonsquare in F×q ,
0 if 2 - q and κ is a square in F×q .

COROLLARY

R1(2,q) =

{ 1
2

Φ(q + 1) if 2 | q,
0 if 2 - q.



Cyclic Code Automorphisms

COROLLARY
The codes of length q2 + 1 or q3 + 1 are cyclic iff 2 | q

COROLLARY
The codes of length q2 + 1 for 2 - q are not BCH-codes

Remark:
If the codes are cyclic, then they are cyclic in R1(2,q) many
ways.


