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Unitals are combinatorial 2-(¢® + 1,¢ + 1, 1) designs. The classical examples are the Her-
mitian unital H(q), defined by the absolute points and absolute lines of a unitary polarity in
the desarguesian plane of order ¢2 and for ¢ = 3?™*! the Ree unital R(q), invariant under
the Ree group. However, already for the case ¢ = 3, a complete classification is missing.
In 1981, Brouwer [2] constructed for ¢ = 3 more than 130 further nonisomorphic unitals,
i.e. 2-(28,4,1) designs. He observed that the 2-rank of the constructed unitals is at least 19.
Here, the p-rank of a design is defined as the rank of the incidence matrix between points and
blocks of the design over the finite field GF(p). In 1998, McGuire, Tonchev and Ward [4]
proved that indeed the 2-rank of a unital on 28 points is between 19 and 27 and that the Ree
unital is the unique 2-(28,4, 1) design of 2-rank 19. In the same year, Jaffe and Tonchev [3]
showed that there is no unital on 28 points of 2-rank 20 and there are exactly 4 isomorphism
classes of unitals of rank 21.

Here, we present the complete classification by computer of unitals of 2-rank 22, 23 and 24.
There are 12 isomorphism classes of unitals of 2-rank 22, 78 isomorphism classes of unitals
of 2-rank 23, and 298 isomorphism classes of unitals of 2-rank 24.
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